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ABSTRACT OF THE DISSERTATION

A Hierarchical and Contextual Model for Learning and
Recognizing Highly Variant Visual Categories

by

Jacob Matthew Porway
Doctor of Philosophy in Statistics

University of California, Los Angeles, 2010

Professor Song Chun Zhu, Chair

In this dissertation we present a hierarchical and contextual model for representing

image patterns (manmade objects and aerial images) that are highly variant from in-

stance to instance. These types of patterns are difficult to model because objects within

the same class may have very different photometric and geometric properties and/or

compositions of parts, e.g. teapots may have very different colors, shapes, and lo-

cations of their spouts and handles. We hypothesize that these varied visual patterns

can be captured by using a novel representation that arranges common primitives of

the patterns in a probabilistic hierarchy, thus compactly capturing possible composi-

tional variations, and then enforces contextual constraints on the appearances of the

parts, thus modeling the conditional photometric and geometric relationships of the

object parts. We combine a Stochastic Context Free Grammar (SCFG), which cap-

tures the long-range compositional variations of a pattern, with a Markov Random

Field (MRF), which captures the short-range constraints between neighboring pattern

primitives, to create our model. We also present a minimax entropy framework for

automatically learning which contextual constraints are most relevant for modeling a

type of pattern and estimating their parameters. Finally, we present a novel Markov

xvi



Chain Monte Carlo (MCMC) algorithm called Clustering Cooperative and Competi-

tive Constraints (C4 ) for efficiently performing Bayesian inference with our model.

C4 is a method for minimizing energy functions defined on graphs that we will use

to combine bottom-up and top-down information to find the best interpretation of an

image. We show experiments on learning models of a number of manmade object cat-

egories and of aerial images and demonstrate that our algorithms automatically learn

models that accurately capture the statistical nature of the patterns we are modeling.

We also show that our model can be used for inference in new images, allowing it to

identify objects in challenging scenarios.
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CHAPTER 1

Introduction

This dissertation presents a hierarchical and contextual model for representing visual

patterns with large variations in their photometric, geometric, and structural proper-

ties. We will present a grammar-based structure that embeds a Markov random field

(MRF) in a stochastic context free grammar (SCFG) to efficiently capture these varia-

tions. Algorithms for performing learning and inference with this model are presented,

followed by experiments showing the usefulness of this model for recognizing objects

in new images.

1.1 Motivation

Many visual patterns in images exhibit huge intraclass variance, meaning that two

instances of the same object may look drastically different. For example, two teapots

may have entirely different colors, shapes, sizes, and configurations of their parts (e.g.

one may have a high, curved handle as opposed to a low, straight handle). At times

these objects may even look more similar to instances within other classes than to

instances within their own class, e.g. bicycles designed to look like motorcycles.

Figure 1.1 shows some real world examples of common manmade objects that ex-

hibit high intraclass variance. We can easily tell that the objects belong to the same

class, despite the fact that have vastly different colors, shapes, sizes, and configurations

of their parts. Figure 1.2 shows examples of urban aerial images, which are all easily

1



Figure 1.1: Examples of objects that exhibit high intra-class variance. All the bikes,

clocks, and MP3 players look drastically different from one another, but we can rec-

ognize them as the same type of object

identified as overhead scenes of cities, yet that have vastly different numbers of build-

ings, cars, and roads, all of which in turn are different scales, colors, and shapes. In this

dissertation we will explore the statistics of images within the same pattern class (e.g.

clocks, aerial images) that allow us to recognize objects with different appearances and

model these variations.

Despite the highly varied appearances of the objects in Figures 1.1 and 1.2 we

can quickly identify consistencies between them. For example, though each clock in

Figure 1.1 has a different shape, color, and arrangement of its hands, we observe that

each clock consists of a frame, a set of hands, and some numbers. Similarly, the aerial

2



Figure 1.2: Examples of aerial images. Despite the high variance in color and compo-

sition, we can still recognize them as overhead views of cities.

images in Figure 1.2 all contain the same types of objects, namely trees, roads, cars,

and buildings. In other words, each of these visual patterns, referred to henceforth

as image classes or simply classes, are comprised of a consistent set of primitives or

parts. In addition, we observe commonly obeyed relationships between the parts in

each image. For example, clock hands are always centered within the frame, one hand

is bigger than the others, and all the hands are the same color. Similarly in aerial

images, cars appear on top of roads, buildings are bigger than cars, and cars don’t park

on top of trees. In other words, the parts of each class obey common relationships

to one another in terms of their color, location, size, and overall relative appearance.

We say that these parts obey statistical constraints on their appearances, or that they

constrain one another. It is because of the commonly occurring parts in each class and

their familiar relationships to one another that we can recognize variant instances as

members of the same class.

3



1.2 Our Approach and Technical Contributions

To handle the huge variability present within image classes, we present a grammar-

based hierarchical and contextual model for object recognition. This model arranges

the primitives of each class in a probabilistic hierarchy and then represents the statis-

tical constraints between them. The contextual hierarchy is not only an extremely

expressive representation, but also serves as a great framework for combining bottom-

up and top-down information during inference. In addition, we present a minimax

entropy learning framework, previously applied in texture modeling, to learn the

parameters of the model and a probabilistic clustering algorithm called Clustering

Competitive and Collaborative Constraints (C4 ) that is used to infer the presence

of and relationships between object parts in images. These key contributions are out-

lined below:

A Hierarchical and Contextual Representation of Patterns

Our model for image classes is a grammar-based model that combines a stochastic con-

text free grammar (SCFG) with a Markov Random Field (MRF) to capture both local

and global context and to combine bottom-up information with top-down knowledge.

SCFGs model highly variant patterns very succinctly by beginning with a single prim-

itive and recursively generating new combinations of primitives according to weighted

production rules until a full pattern is created. SCFGs are very compact representations

of highly variant patterns as just a few production rules can be used to create a combi-

natorially huge number of instances. However, SCFGs lack the ability to capture local

context. MRFs are often used to model local context, as they very efficiently model

the probability over neighborhoods of variables. However, MRFs are defined only on

local neighborhoods or related variables, and thus cannot capture higher-level, long-

ranging context without becoming prohibitively complex. By fusing these two data

structures, however, we create a model that can generate and recognize a huge number
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of varied instances that are all guaranteed to be locally consistent. In our model, we

represent the frequency of occurrence and type of object parts with a SCFG and model

the spatial and appearance relationships between them using MRFs, thus creating a

constrained grammar that can represent a huge number of instances for a single visual

category.

A Minimax Entropy Learning Algorithm

Our contextual and hierarchical model learns statistical constraints on the appearances

and relationships between different parts of the image class. Unlike most contextual

models that require an explicit hand-defined set of relationships, our model uses a

parsimonious minimax entropy framework to intelligently select the set of contextual

relationships necessary for modeling the object class. The model begins with a huge set

of relationships that could potentially exist between parts, but then iteratively selects

only those relationships that help the model best match true statistics for that image

class. By using this approach, one needs only provide some very basic definitions of

contextual relationships (e.g. relative positions or relative orientation between parts),

which will then be applied to every possible set of parts and automatically selected

by the algorithm if they are deemed relevant. This learning algorithm both selects the

most relevant contextual relationships for each object class and learns the parameters

of the model in one concise process.

C4 - A Probabilistic Clustering Algorithm for Inference

Our final contribution is an algorithm for inferring the presence of an object or objects

within a new image. Given a set of candidate object parts that we detect in a new

image, we must use the top-down information learned in our model to determine which

truly arise because of an object and which are just false detections. The final piece of

our research entails a probabilistic clustering algorithm called Clustering Cooperative

and Competitive Constraints (C4 ) that can quickly and efficiently identify which part
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detections satisfy the learned constraints to comprise a full object. C4 is an energy

minimization algorithm defined on graphs that probabilistically activates cooperative,

or positively associated, links between pairs of parts to form connected components

(ccps) that represent sub-solutions to the problem. C4 then identifies competitive,

or negatively associated, connections between ccps to form cccps and then relabels

entire cccps such that they satisfy learned constraints. The result is that, unlike greedy

methods, C4 can probabilistically jump out of local energy minima between different

solutions (modes in the posterior) and can explore multiple solutions. Due to the fact

that it probabilistically clusters potential object parts instead of analyzing each part

individually, it can also move much more quickly through the solution space than

traditional Metropolis-Hastings sampling methods. The end result is that the algorithm

can quickly identify objects in images using local and global context to rule out false

positives.

1.3 Overview of the Dissertation

In this dissertation we will describe the three major contributions listed above – a novel

representation for highly variant object classes, a minimax entropy learning algorithm

for automatically learning the model’s relationship constraints and their parameters,

and an inference algorithm for finding objects in new images. The remainder of the

dissertation is organized as follows:

Chapter 2 presents a survey of related work in object and aerial image modeling and

highlights the shortcomings of current methods image class modeling and recognition.

Chapter 3 describes the representation of our hierarchical contextual model and

presents its mathematical formulation. We will also discuss how to apply this model

to images of man-made objects and aerial images.
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Chapter 4 explains the minimax entropy learning algorithm for estimating the

model parameters from a small set of labeled training images. We will examine how

this process applies to both the object modeling and aerial image modeling.

Chapter 5 presents results on learning models of objects and aerial images using

our method.

Chapter 6 provides the formulation and implementation of our inference algorithm,

C4 as well as experimental results showing C4 applied to energy minimization prob-

lems on graphs.

Chapter 7 reports experimental results of recognizing objects and parsing aerial

images using bottom-up detection methods in conjunction with C4 for inference.

Chapter 8 concludes the dissertation with discussion of the results and an outline

of future work.
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CHAPTER 2

Related Work

The work in this dissertation focuses on algorithms for modeling and recognizing

highly variant image classes. Previous solutions to this research problem can roughly

be divided into appearance-based methods, geometric-based methods, and composi-

tional / grammar-based methods. In this chapter we will describe related works from

each of the three methods.

2.1 Appearance-Based Methods

The earliest attempts at object modeling fell primarily into the category of appearance-

based methods. Appearance-based methods attempt to recognize objects and scenes

using their photometric properties, i.e. by using either the pixels of the image directly

or a set of features derived from the image. In focusing on the photometric qualities

of the image, these approaches tend to disregard the geometric relationships within

the image pattern, preferring instead just to use independent distinctive features in the

image for classification.

In the early 90’s Nayar (Nayar et al., 1996) learned a compact representation of

objects by performing Principal Component Analysis (PCA) on images of each object

under different poses and illuminations. PCA is a dimensionality reduction technique

that computes an orthogonal basis of eigenvectors for a set of data such that the re-

sulting eigenvectors are aligned in the directions of maximum variance. For a set of
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Figure 2.1: Four object classes and their corresponding manifolds in the eigenspace.

The manifolds vary over pose and illumination.

training vectors X , the covariance matrix C can be computed as C = XTX and the

eigenvectors computed by solving

Cvi = XTXvi = λivi (2.1)

where (λi, vi) are the eigenvalues and eigenvectors. This technique achieves a high

compression rate when the data points have high correlation with each other, which

images of the same object do. Nayar mapped each image into its eigenspace, creating

a manifold that varied with the pose and illumination of each object. Figure 2.1 shows

a set of object classes and their resulting manifolds in eigenspace. Using this method,

new images could be mapped to the eigenspace and their type, illumination, and pose

determined based on where they existed in the space. Nayar’s work (in turn inspired

by Turk and Pentland’s eigenfaces (Turk and Pentland, 1991)) would later give rise

to kernel-PCA and other dimensionality-reduction methods for object recognition (Ali

and Shah, 2005; Moghaddam, 1999).

Another appearance-based method that is quite popular today is the bag-of-words
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classifier. The bag-of-words classifier encompasses a huge body of methods that rep-

resent image classes based on the occurrence of certain features (words) with no regard

for the spatial correlation between these features. Common appearance-based features

used for modeling image classes include SIFT (Lowe, 2004), SURF (Bay et al., 2008),

or MSER (Forssen and Lowe, 2007) descriptors. The simplest classifiers simply use a

Naive Bayes Classifier to determine whether an image contains a certain type of object

or not. More sophisticated bag-of-words approaches use Latent Dirichlet Allocation

(LDA) or probabilistic Latent Semantic Analysis (pLSA) to learn “topics” of groups

of features (Blei and Jordan, 2003; Hoffman, 1999). Ullman used the presence of spa-

tially fixed “patches” to identify the presence of objects (Ullman et al., 2001) and one

of the most successful computer vision algorithms, AdaBoost (Freund and Schapire,

1997), learns a classifier based on weighted combinations of these low-level features.

Appearance-based methods, while simple to learn and, at times, quite successful

for object categorization (Zhang et al., 2001), are simply too naive to capture the vast

differences in appearances of objects within the same class. The lack of geometric

and higher-level constraints between pixels and features means that appearance-based

models will always be fooled by images that contain the right features but in the wrong

order.

2.2 Geometric-Based Methods

Researchers recognized the shortcomings in purely appearance-based methods and be-

gan incorporating geometric constraints into the model. Geometric-based methods

model objects as collections of parts that are related to one another by geometric con-

straints. Arguably one of the most famous among these models is the constellation

model (Weber et al., 2000). The constellation model identifies common parts in an

object category and models the relative position between them. In this way, the model
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has much greater expressive power than apperance-based methods, as it models not

just which parts are present, but where they should be in relation to one another. Fer-

gus designed a representation that models the appearance, shape, and relative scale of

a set of low-level features to one another (Fergus et al., 2003). Given a class model

with learned parameters Θ, the likelihood of a new object appearing can be factorized

as

p(X,S,A|Θ) =
∑
h∈H

p(X,S,A, h|Θ) (2.2)

=
∑
h∈H

p(A|X,S, h,Θ)p(X|S, h,Θ)p(S|h,Θ)p(h|Θ), (2.3)

where (X,S,A) are the position, shape, and appearance, respectively, and H is a set

of hypothesis parts detected in a new image. The individual terms are modeled by

independent Gaussians. Figure 2.2 visualizes the constellation model for the motorbike

category. The plot shows the relative positions of the wheels, sides, and other features

of the motorbike. The corresponding parts are indicated in the images below the plot.

Variants and simplifications of the constellation model include the Star model (Fergus

et al., 2005) K-Fans (Crandall et al., 2005), and pictorial structures (Felzenszwalb and

Huttenlocher, 2005; Fischler and Elschlager, 1973).

While geometric methods are a large improvement over appearance-based meth-

ods, they still don’t capture much of the variability present in different object classes.

Geometric models capture the relative positions of a fixed number of parts, but lack

flexibility in modeling the appearance of each part, the number of parts present, and the

possible configurations of parts. For example, a clock may have a square or a pointed

hand, which requires a more complicated likelihood model for the part than most part-

based models use. Additionally, clocks can have two or three hands, depending on

whether a second hand is present. The constellation model only understands a rigid

set of parts, and thus has no flexibility to model both of these configurations. Lastly,
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Figure 2.2: Example of the constellation model for a motorbike (Fergus et al., 2003).

The plot shows the relative positions of the part distributions. The row of images below

shows the presence of those parts in each image.

the relative positions of clock hands vary drastically over time. It will be very difficult

to get a useful distribution of the hands’ relative positions for the constellation model.

Thus, while geometric methods are an improvement over appearance-based methods,

their inability to model the various part configurations makes them infeasible for use

with general object categories.

2.3 Grammar/Compositional-Based Methods

Recently grammar-based and compositional models have gained popularity in the ma-

chine learning and computer vision communities. These models seek not only to cap-

ture the relationships between objects or parts, but also arranges them hierarchically,

allowing the number and configuration of parts to vary for each object. One can think
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of grammars for images like grammars for a language - the grammar defines a dictio-

nary of “words” (object parts) and “rules” (relationships between object parts) for how

they need to be composed, thus generating an image of an object the way a grammar

for language generates a sentence.

Early work by Fu(Fu, 1981) introduced attribute grammars to account for struc-

tural variance in images, but worked primarily on line drawings and shape contours,

as opposed to natural images. Fu was one of the first to directly draw the comparison

of image modeling to grammar models and to combine syntactic methods with statisti-

cal pattern recognition. These models are appealing because they explicitly model the

relationships between fundamental parts of each class, or primitives, and gives an intu-

itive explanation for their generation. Dickinson (Dickinson et al., 1992; Keselman and

Dickinson, 2001; Siddiqi et al., 1999) introduced shock graphs for modeling shapes in

the 90’s, which arranged portions of medial axis skeletons into grammar trees (Figure

2.3). Up until this time however, there was little other work in grammar-based models

for vision.

In the early 2000’s, grammar-based models made a resurgence for modeling visual

categories. Han(Han and Zhu, 2005) used attributed graph grammars to describe rec-

tilinear scenes as composed of groups of rectangles recursively composed by a set of

arrangement rules. In Han’s work, the grammar’s only primitives were sets of rect-

angles and the spatial arrangements between them were hard-coded according to the

decomposition rule used at each step. Figure 2.4 shows a visualization of Han’s indoor

room modeling using rectangles and some of the decomposition rules that were hard-

coded into the model. Chen (Chen et al., 2006) extended the attribute grammar work

by introducing “composite templates” arranged in an And-Or graph to model clothes.

Here, composite templates refer to deformable templates of different parts of clothes,

e.g. the shirt sleeve, the collar, and the torso, and they were arranged into an And-Or
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Figure 2.3: A shock graph for silhouette matching (Dickinson et al., 1992).

graph model (Pearl, 1984). Figure 2.5 shows an example of the And-Or graph model

used for clothing. The hierarchy for different clothes types are hand-defined, as are

the spatial and appearance relationships between them. Chen’s work is able to create

and identify a huge variety of different clothing patterns, but requires a good deal of

operator input that makes it infeasible to extend to arbitrary categories.

After 2005, the field of compositional models expanded dramatically. Winn’s

work(Winn and Shotton, 2006) on Layout Consistent Random Fields learns a de-

formable configuration of object parts to represent objects within the same class that

may have varied appearance. Todorovic created a graph-based model that models arbi-

trary regions in images and the relationship constraints between them (Todorovic and

Ahuja, 2006). While this model is not a grammar-based model per se, it can automati-

cally learn hierarchical compositions of object parts that are related to one another by
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Figure 2.4: An attributed grammar parse of an indoor scene (Han and Zhu, 2005). The

right panel shows different types of rectilinear production rules used in the grammar.

consistent appearance constraints. Sudderth used a hierarchical Dirichlet process to

discover naturally occurring relationships between objects in scenes (Sudderth et al.,

2005). Jin and Geman used a true grammar-based model to robustly identify license

plates in images and read the text off of them, regardless of the variations in their ap-

pearances (Jin and Geman, 2006). Cao and Li created a spatial approach to common

LDA in an attempt to model the relationships between parts identified by LDA (Cao

and Li, 2007). Lastly, other work has created taxonomies of objects using reusable

parts that captures hierarchy in terms of basic primitives and their relationships to one

another (Torralba et al., 2004; Zhu et al., 2008; Sivic et al., 2005; Singhal et al., 2003;

Li and Perona, 2005).

The works above are too vast and detailed to discuss individually in great depth.
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Figure 2.5: An And-Or graph representation for clothing templates (Chen et al., 2006).

This structure and the leaf nodes are hand-defined.

However, we can note that our work takes inspiration from many of them in one form

or another. The overall shortcoming in most of the methods above is that they lack

something in terms of either representation, learning, or inference. Either their model

does not consider both hierarchy and horizontal constraints, or there is not a simple

way to learn the parameters of the model, or inference is made difficult by the com-

plexity of the model. Our work seeks to address all three of these problems in a single

framework.
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2.4 Domain-specific Methods

As one of the domains we will apply our method to is aerial images, it behooves us to

talk about the work that has been done in understanding objects in overhead imagery.

As we will see, we can use our constrained grammar to model aerial images in terms

of the objects present and their relationships to one another. Much work has been

done on identifying single objects in aerial images, such as rooftops (Maloof et al.,

2003; Vestri, 2001; Liu and Prinet, 2005), cars (Li et al., 2005; Zhao and Nevatia,

2001), or roads (Boichis et al., 2000). In these cases, however, context plays little role,

as single objects are detected without taking the support of surrounding objects into

consideration. These works use similar object detectors to those we will use, though

they almost exclusively use one detector without considering the support from multiple

detectors. These detectors include AdaBoost (Freund and Schapire, 1997; Viola and

Jones, 2001), Bag of Words (Berg et al., 2007; Sivic et al., 2005) and TextonBoost

(Shotton et al., 2006).

Some aerial imaging works incorporate context and/or multiple object category de-

tection into the same framework. SIGMA (Matsuyama and Hang, 1990), a knowledge-

based “expert system” for aerial images, was an attempt to model rule-based spatial re-

lationships between objects. Unfortunately, as in much of the computer science based

AI work of that time, relationships were often hardcoded and thus not generally exten-

sible. On a smaller scale, Moissinac identified roads and city blocks in urban scenes

using local context rules to decide how roads connect and how blocks should appear

(Moissinac et al., 1994). Hinz used positional relations to determine the likely po-

sitions of roads in aerial images (Hinz and Baumgartner, 2000). A recent approach

for parsing images of outdoor scenes by Berg (Berg et al., 2007) also seeks to model

images as collections of regions that obey positional and relational constraints. As far

as we know, however, these models require a good deal of hand-tuning and hardcoded
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logic in order to encode the relevant constraints. SIGMA relied on experts to identify

relationships of interest to model, Moissinac knew exactly the domain he was working

with (handdrawn maps) and designed relationships accordingly, and Berg et al. used

domain knowledge of the objects they wanted to identify to design contextual cues.

Our model improves upon this shortcoming by employing a minimax entropy learning

framework to automatically select significant relationships from a bank of potential

relationships that can be designed to work on many domains of data without constant

user input.
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CHAPTER 3

The Hierarchical Contextual Model

The hierarchical contextual model that we present is composed of a stochastic context

free grammar (SCFG) and a Markov random field (MRF). The SCFG captures the

hierarchical nature of objects and images and allows for variability in the number and

types of parts present. Given the objects from the tree-structure of the SCFG, the MRF

components impose local constraints on the objects. For example, we may constrain

car wheels to have the same size and color using an MRF. By allowing the SCFG

to model the long-range relationships between object parts and the MRF to model

the short-range local variability between object parts, the model can represent a huge

range of potential appearances for an object in a principled way. We will describe the

formulation of this model below.

3.1 Stochastic Context Free Grammars

Stochastic Context Free Grammars (SCFG) were extensively studied by Chomsky

(Chomsky, 1956) in the 1950’s in his work on modeling the structure of language.

A Context Free Grammar (CFG) represents a language of patterns, defining the valid

set of configurations for a dictionary of atomic tokens. More formally, a CFG G can

be defined as a 4-tuple:

G =< VN , VT , R, S > (3.1)

where VN is a set of non-terminal nodes, VT is a set of terminal, or “leaf” nodes, R
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Sentence

NP VP

D + N D + ADJ + N
V + AV

VD ADJN AV

NP + VP

The A Dog Cat House Red Fast Slowly Today RanFlew

And Node

Or Node

“The dog ran.”

Figure 3.1: A visualization of a simple grammar for English. And nodes represent

production rules and Or nodes represent sets of production rules that have the same

symbol on the left. Dark thick lines show the parse tree for the sentence “The dog

ran.”

is a set of production rules, and S ∈ VN is the root node. A production rule takes the

form

R = V i
N → C (3.2)

where C can be a conjunction of any number of non-terminal and/or terminal nodes. A

CFG operates by beginning with the root node S, and decomposing it into a set of non-

terminal and/or terminal nodes via the production rules in R. Each non-terminal node

in the resulting decomposition is in turn transformed into a new set of non-terminal

and/or terminal nodes via production rules until only terminal nodes remain. The end

result is a “sentence” of all terminal nodes that were recursively generated via the

production rules.

Figure 3.1 visualizes a simplistic CFG for the English language. Generating a

20



sentence entails starting at the root and applying production rules until a sentence is

generated. For example, a sentence must consist of a noun phrase (NP) and a verb

phrase (VP), so the first rule is

Sentence→ NP + V P (3.3)

The non-terminal node NP could then be subject to one of two rules:

NP → D +N (3.4)

NP → D + ADJ +N (3.5)

(3.6)

This process of expansion continues until we end at the terminal leaf nodes.

Note that a grammar is nothing more than a set of nodes and a set of production

rules that can be applied to those nodes. We are visualizing the full spectrum of po-

tential applications of each production rule to each node in Figure 3.1. As such, let us

introduce some terminology that will be very useful later. We define an And node as

a non-terminal node that will decompose into one or more other non-terminal nodes.

And nodes correspond to a single production rule that has one or more symbols on the

right hand side. In our example, (NP + VP) is an And node as it must be rewritten as

an NP AND a VP. We define an Or node as a non-terminal node that can decompose

into a number of different sets of non-terminals. Or nodes represent the set of produc-

tion rules that have the same symbol on the left side. For example, NP is an Or node

because it can be rewritten as (D + N) OR (D + ADJ + N). We will use And nodes

and Or nodes often in this dissertation while visualizing the possible decompositions

of grammar models.

A CFG assumes that each non-terminal node V i
N can be decomposed by uniformly

selecting a production rule that has V i
N on the left. To capture the true frequency

with which terminals appear in the world, however, CFGs were extended to Stochastic
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Context Free Grammars (SCFGs), which assign a probability P = {ρ1, ρ2, . . . , ρr} to

each production rule for it being chosen. This addition extends the 4-tuple from above

to a 5-tuple,

G =< VN , VT , R, S, P >, (3.7)

which now includes the probability of selecting a certain production rule for a given

non-terminal node.

In Figure 3.1, we can add a probability vector ρi at each Or node that models

the probability with which it decomposes into each of its children. By recursively

selecting these decompositions according to probability ρi, we walk through the tree

and generate a realization from the grammar, or a sentence. We will refer to each

realization from the grammar as a “parse tree”. The thick, dark lines in Figure 3.1

show the parse tree structure for the sentence “The dog ran”. The set of all possible

sentences is known as the “language” of the grammar and is denoted L(G) = {w ∈

V ∗T : S →∗ w}, where w is a set of words and S →∗ w indicates multiple productions

starting at S and resulting in w.

The SCFG we have defined above is known as a random branching process in

statistics. The probability of a parse tree pt consisting of a set of words w ∈ VT can be

defined as

p(pt(w)) =

|w|∏
i=1

p(ρi). (3.8)

Thus the probability of observing a given parse tree pt that creates a set of words w is

simply the product of the production rule probabilities required to form that sentence.

It is possible, of course, that there may be many parse trees that give rise to the same

set of words w. Therefore, the probability of a given series of words w is simply the

sum over all parse trees that produce the sequence w

p(w) =
∑
pt(w)

p(pt(w)). (3.9)
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Thus, a grammar defines a probability distribution over a language of valid sentences,

L(G) = {(w, p(w)) : S → w,w ∈ VT}.

Whether the grammar we have defined is over text, images, or another signal, we

can see that the probability of creating a sentence treats the probability of forming each

word independently. The probability of a word appearing depends only on its parent

node, not on its neighboring words. Thus, SCFGs do not capture local context or any

type of spatial interactions between the resulting words in the sentences.

3.2 Markov Random Fields

A Markov Random Field is a graph < V,E > on which a set of random variables X is

defined that obey a group of Markov properties. The Markov properties are as follows:

1. Pairwise Markov Property: Any two non-adjacent variables are conditionally

independent given all other variables:

Xu ⊥ Xv|XV/{u,v}if{u, v} /∈ E (3.10)

2. Local Markov Property: A variable is conditionally independent of all other

variables given its neighbors:

Xv ⊥ XV/cl(v)|XδΛ(v) (3.11)

where δΛ(v) is the set of neighbors of v and cl(v) = {v} ∪ δΛ(v) is the closed

neighborhood of v.

The Markov properties are a mathematically precise way of describing local con-

text. The second property is particularly useful and intuitive, and states that the proba-

bility of a given variable’s state is dependent only upon its local neighborhood. Thus,

MRFs are perfect representations of models that account for local context.

23



xi

Figure 3.2: A Markov Random Field on a grid. The probability of xi’s value is inde-

pendent of the rest of the grid given its neighbors (shown in gray hatch).

The   dog    ran    fast.

p(dog|the) p(ran|dog) p(fast|ran)p(the)

Figure 3.3: Generation of an English sentence using pairwise Markov constraints.

Figure 3.2 shows an example of an MRF grid. The probability p(xi|X) = p(xi|Λxi),

meaning that the probability of xi is conditionally independent of the rest of the graph

X given its neighborhood Λxi .

By the Markov property, we can define the probability of a sentence of words w by

simply modeling the probability of each word given its previous word,

p(w) = p(w0)
N−1∏
i=1

p(wi|wi−1). (3.12)

In this way, MRFs incorporate local spatial constraints into the model. Figure

3.3 shows a pairwise generation of a sentence of English words. Where the SCFG

modeled the structure of a sentence as a composition of different sub-parts but didn’t

account for spatial interactions between neighboring words, the MRF model accounts

explicitly for the probability of words given their neighbors.

We can also define the probability for an MRF over a set of variables X as a

product of their clique potentials φC(xC), where a clique xC ∈ X is merely a subset
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of the graph G and we know that we can factorize G into a set of cliques. The clique

potentials φC() are real-valued functions over the variables in each clique, and the full

probability can be defined as

p(X) =
1

Z

∏
C∈G

φC(xC), (3.13)

where Z is a normalization constant over all possible configurations of the variables

X defined as

Z =
∑
X∈X

∏
C∈G

φC(xC). (3.14)

This formulation is useful for graphs that are not as linear as our sentence example and

are more easily defined in terms of functions over sets of variables than on the single

variables themselves.

While the MRF captures local probabilities and configurations, it cannot ensure

global consistency, e.g. that the words more than two neighbors away are consistent

with each other.

3.3 Creating a Contextual Hierarchy

We have shown that SCFGs are very powerful for representing the variability of all

the different instances in a language, or class of patterns, however they lack local con-

sistency. We have also shown that MRFs capture local consistency, but have trouble

modeling global context and variability. Additionally, the examples we’ve given so far

have made the connection to grammars for language, but we have yet to discuss the ex-

tension of these models to images and visual patterns. Sentences in English are formed

from well-known tokens (words) in a linear format (a sentence), but images have no

such agreed-upon atomic unit and exhibit far more complex correlations than simply

linear order. We will now show how to form a constrained hierarchy by combining

SCFGs and MRFs and describe their application to the visual domain.
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Figure 3.4: A toy example of a contextual hierarchy. (a) The full model for this lan-

guage. Nodes are labeled as And or Or nodes. Dotted lines indicate contextual rela-

tionships. (b) Two parse graphs generated from the model. (c) Flattened parse graphs

are configurations or realizations from the model, like sentences.

Figure 3.4(a) shows an example of a contextual hierarchy. An object is created by

starting at the root of the graph and expanding nodes until only terminals remain, as in

a SCFG. Just as in an SCFG node expansions consist of “And” nodes, where one node

expands into multiple nodes and “Or” nodes, which can only choose one of their child

nodes to expand into. For example, node S is an And node, and expands into nodes

A and B, which in turn are Or nodes and will only decompose into one child each.

Figure 3.4(a) is a visualization of the following grammar
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S→ AB C→ GH F→ 6

A→ C | D D→ 4 G→ 1

B→ E | F E→ 5 H→ 2 | 3
Unlike a traditional SCFG, however, we incorporate relational constraints between

pairs or cliques of nodes in the tree. The horizontal line between A and B represents

a relational constraint. These constraints do not influence the node expansion, but act

a posteriori on the selected nodes to constrain their features, e.g. appearance. The

constraints are inherited by any children of constrained nodes as well.

The contextual hierarchy is formulated similarly to the 5-tuple for the SCFG,

G =< V,R, P >, (3.15)

where V = S ∪ VN ∪ VT is our full set of non-terminal and terminal nodes, R are now

statistical relationships between the nodes, instead of production rules, and P is our

probability model over the graph.

V : Terminal and non-terminal nodes: We’ve compressed the root node, termi-

nal nodes, and non-terminal nodes into a single set V for convenience,

V = S ∪ VN ∪ VT . (3.16)

In the language example, terminals were words and non-terminals were parts of speech.

For visual patterns, terminals will be image structures, such as part boundaries or low-

level descriptors. The non-terminal nodes are simply compositions of lower-level im-

age structures.

Each non-terminal node VN = {V And∪V Or} is either an And node or an Or node.

We define a variable ω(vi) on Or nodes vi ∈ V Or that takes an integer value indexing

which of its N(ω(vi)) children it can decompose into,

ω(vi) = k; k = {1, 2, . . . , N(ω(vi))} . (3.17)
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(Note: we will often useN() throughout this dissertation to represent the cardinality of

certain quantities.) ω(vi) acts as an index into the production rule chosen at each node.

Thus, the probability p(ω(vi) = k) is the probability that node vi will decompose into

its kth child.

Regardless of what type of image structure we define for the terminal and non-

terminal nodes, each node vi ∈ V will have a set of attributes φ(vi). In general, these

attributes will at least include the part’s position, scale, and orientation,

φ(vi) = {Xi, σi, θi} . (3.18)

In Sections 5.1.2 and 5.2.2 we present our implementation of these attributes for our

experiments.

R: Statistical Relationships: Instead of production rules,R = {r1, r2, . . . , rN(R)}

defines the set of relationships that exist between nodes at the same level of the hierar-

chy. These relationships are constraints on the attributes of sets of nodes, for example

how far apart they are, whether they’re the same color or not, or how different their

sizes are.

A relationship ri consists of a set of k nodes Vi ∈ V that it acts on, a univariate

function f() over their attributes that acts as a statistical constraint, and a model of the

responses of f(), p:

ri = {Vi, fi(φ(Vk)), pi} . (3.19)

For example, the relative position between cars and buildings could be expressed as

f(φ(Cars), φ(Buildings)) = XCars −XBuildings . (3.20)

If we believe relative position between cars and buildings is normally distributed with

mean 5 and standard deviation 1, then the whole relationship is packaged as

ri = {(Cars,Buildings), fi = XCars −XBuildings, fi() ∼ pi = N (5, 1)}. (3.21)
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We will discuss the relationship functions f() and their distributions pi in our im-

plementation in Sections 5.1.5 and 5.2.5. At this point it is enough to know that each re-

lationship represents the distribution of a function response over a set of nodes. These

distributions act as our statistical constraints.

pg: Parse Graphs: A realization from an SCFG was called a parse tree and com-

prised a subset of a tree. For our contextual hierarchy we change our definition slightly

and define a “parse graph”, which is a subset of the contextual hierarchy. A parse graph

corresponds to a single realization from our model (e.g. a single clock), but now in-

cludes the horizontal constraints between nodes, hence the term parse “graph”. Figure

3.4(b) shows an example of a parse graph drawn from our contextual hierarchy for

the toy example. The Or nodes are determined during a walk of the graph, fixing the

parts, so only And nodes remain. The And nodes have been constrained by the cor-

responding relationships learned in the contextual hierarchy. By flattening the parse

graph hierarchy, we get a single object, or configuration, like a sentence in a language,

consisting of the parts we have stochastically selected and their obeyed statistical con-

straints. This is equivalent to a sentence in natural language, and Figure 3.4(c) shows

examples of configurations from our example.

Let us define some terminology on parse graphs, similar to that of G:

1. Vpg ⊆ V : The nodes present in pg, which are a subset of the nodes possible in

G.

2. Ωpg = {ω(vi); vi ∈ V Or
pg }: The values of the production rules selected to form

pg. For example, if the node A from Figure 3.4(a) decomposed intoD, its second

child, then ω(A) = 2.

3. Rpg ⊆ R: The constraints, or edges, between nodes in Vpg. These edges are

inherited from the relationships R present in G, so if the model has learned that
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clock hands should be in the center of the frame, the clock hands we created will

be constrained to appear in the center of the frame we created.

P : Probability Model: P is our probability model, including the probability that

non-terminal nodes decompose into a certain number of child nodes, as well as the

probability encoded in our statistical constraints, i.e. the probability that two object

parts appear under certain relationships to one another. We will define the probability

model for the contextual hierarchy as a probability of observing a single parse graph.

3.4 Mathematical Formulation for the Contextual Hierarchy

We observe a set of N obs images Iobs = {Iobsi : i = 1, 2, . . . , N obs} drawn from

the class that we are trying to model. These images have corresponding parse graph

representations PGobs = {pgobsi : i = 1, 2, . . . , N obs} associated with them. The parse

graphs pg follows some true, unknown distribution, f(pg), determined by nature. Our

goal is to design a model p(pg) that approximates f(pg) as closely as possible. One

way to do this is to match the marginal statistics of p(pg) to the marginal statistics

of f(pg). If for some statistic φ(pg), Ep[φ(pg)] = Ef [φ(pg)], then our model p(pg)

recreates the observed statistics of φ(PG) and is similar along that dimension to f(pg).

If this is true for many φ(), then p(pg) is a functional approximation to f(pg).

The observed statistics of f(pg) that we would like our model p(pg) to recreate are

1. The distribution of ω(vi), the number of children each node vi ∈ V Or(pg) de-

composes into.

2. The distribution of responses of fi() for each statistical relation ri ∈ R in G.

We can model the distributions of these variables as histograms. Our motivation for

using histograms is two-fold: They are piecewise constant approximations to the con-
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tinuous distributions we are modeling in the limit and they don’t require knowing the

form of the distributions in advance. We can thus describe trimodal distributions as

easily as unimodal distributions by using histograms. We will discuss the implemen-

tation of our histogram representation in Sections 5.1.3 and 5.2.3.

We pool our Or node switch variable values ω(vi) and relationship values fi()

observed in PGobs into histograms,

H
(α)
i (pg, z) =

∑Nobs

k=1 #(ω(vi) = z)∑Nobs

k=1

∑
j∈N(ω(vi)))

#(ω(vi) = j)
, i = 1, 2, . . . , N(V Or(pg)) (3.22)

H
(β)
j (pg, z) =

Nobs∑
k=1

∑
Vj⊆Vpgk

#(fj() = z)∑
Vj⊆Vpg(i) #(fj())

, j = 1, 2, . . . , N(R) (3.23)

where # is a counting function representing the number of times that something oc-

curs, and #(fi()) is the number of times fi() takes any value. Note that we use the

superscript (α) to refer to histograms of switch variables and (β) to refer to histograms

of relationship function responses. Each bin z in H(α)
i (pg) is then the number of times

that node vi decomposes into child node z divided by the number of times we observe

vi decomposing into any of its N(ω(vi)) children. Each bin z in H(β)
i (pg) is the num-

ber of times that relationship function fi() returns z divided by the number of times

fi() returns anything. These histograms are simply the values we observe for each

parse graph pooled over PGobs.

We want to design our model such that the expectation of these distributions with

respect to our model p(pg) match the expectation of these distributions with respect to

the observed distribution f(pg).

Ep[H
(α)
i ] = Ef [H

(α)
i ]; i = 1, . . . , N(V Or) (3.24)

Ep[H
(β)
j ] = Ef [H

(β)
j ]; j = 1, . . . , N(R) (3.25)

Note that we will not have access to Ef [H
(α)
i ] or Ef [H

(β)
j ] directly, as f is un-

known, but we can estimate them using the sample means of the histograms of the
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observed data,

Ef [H
(α)
i ] ≈ 1

N obs

Nobs∑
k=1

H
(α)
i (pgobsk ) (3.26)

Ef [H
(β)
j ] ≈ 1

N obs

Nobs∑
k=1

H
(β)
j (pgobsk ) . (3.27)

We will intend this approximation whenever we refer to expectations with respect to f

for the remainder of the dissertation.

Of all of the distributions that match the Or node and relationship statistics of the

observed data Ωp = {p(pg) : Ep[H
(α)
i ] = Ef [H

(α)
i ], Ep[H

(β)
j ] = Ef [H

(β)
j ]}, we want

to select the one that is least biased or most unprejudiced among any other dimen-

sions. We can phrase our search for the optimal distribution p(pg)∗ as the following

constrained optimization problem:

p(pg)∗ = arg max{−
∑

p(pg) log p(pg)} (3.28)

subject to

Ep[H
(α)
i ] = Ef [H

(α)
i ], i = 1, 2, . . . , N(V Or ∈ G) (3.29)

Ep[H
(β)
j ] = Ef [H

(β)
j ], j = 1, 2, . . . , N(R ∈ G) (3.30)

Via maximum entropy, the probability model that satisfies these constraints and repro-

duces the observed statistics is the familiar Gibbs model

p(pg; Θ, R) =
1

Z[Θ]
exp−ξ(pg) (3.31)

ξ(pg) =

N(V Or)(pg)∑
i=1

< λ
(α)
i , H

(α)
i (pg) >+

N(R)(pg)∑
j=1

< λ
(β)
j , H

(β)
j (pg) > (3.32)

Z[Θ] =
∑

pg∈L(G)

exp−ξ(pg) , (3.33)
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where Θ = {λ(α), λ(β)}, R is the set of contextual relationships, and Z[Θ] is a normal-

ization constant. The first term in ξ(pg) is the energy of the Or node decompositions

and the second is the energy of the relationship constraints. If we have an unlikely set

of parts in our image (e.g. a clock with no hands or an oddly shaped clock frame), then

the first term will have high energy and the interpretation will have low probability. If

we have objects that do not obey the statistical constraints we learned during training

(e.g. a clock with hands that aren’t centered), then the second term will have high

energy and the interpretation will have low probability.

The Lagrange multipliers {λ(α), λ(β)} are vectors of the same dimension as H(α)

or H(β), respectively, and < . . . > indicates an inner product. For example, if re-

lationship r(β)’s function fi evaluates to z on parse graph pg, then the energy from

that relationship is λ(β)(z) ∗ H(β)(pg, z). The λ’s are the natural parameter set of the

model and serve to weight histogram bins so that dependent relationship interactions

are weighted correctly. These λ’s will be learned in the following chapter.

3.5 Application to Object Modeling

Figure 3.5(a) shows a contextual hierarchy for the clock object class. The terminal

nodes consist of low-level object parts that are combined into higher-level composi-

tions at the non-terminal nodes. We have chosen to use conceptual object parts, such as

clock hands or frames, as the leaves of the tree, though one could extend the model fur-

ther by decomposing these parts into their constituent visual primitives, such as edges

or blobs. The relationships between parts are statistical constraints on their physical

appearance, primarily focused on modeling relative position, relative scale, and rela-

tive orientation. Figure 3.5(b) shows two parse graphs from the clock class. The dark

arrows in Figure 3.5(a) indicate the Or node productions used to create the top parse.
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Figure 3.5: (a) A contextual hierarchy for the clock class. The root level object (an And

node) decomposes into a set of constituent parts that can each take varied appearances

(Or nodes). The dashed horizontal lines represent statistical constraints between the

parts. (b) Two valid clock parse graphs drawn from the model.

By flattening the hierarchy, we get the familiar images of clocks at the roots of each

parse graph.

The hierarchy that we construct for each object class is currently defined by hand.

This is not terribly time consuming, as many of the object classes only consist of a

small number of different parts. We can therefore define the high-level parts we are

interested in (e.g. clock hands and clock frames) and arrange them hierarchically.

We are considering techniques to help automate this process and learn the hierarchy

automatically.
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3.6 Application to Aerial Image Modeling

Unlike images of objects, each aerial image does not have a set number of parts that

simply need to be reconfigured. Aerial images instead consist of varying numbers of

common objects, such as cars, trees, and roads. To model aerial images, we define a

core set of object types and let the non-terminal nodes in the hierarchy indicate single

objects or groups of objects. Figure 3.6 shows this modified hierarchy. The model

consists of nodes divided into a root scene node, group nodes, and object nodes.

Group nodes are collections of the same type of object, such as blocks of roofs

or lines of cars, while object nodes are the single objects within each group. Below

this level is the object representation level, which may be hierarchical in and of itself,

as in the case of roofs and roads in our example, or may terminate at a one-layer

representation for the object. The top 3-levels are representation agnostic, however,

so we will put off a discussion of object detection and representation until Section

7.2.1. The thick arrow edges between the scene node and group nodes and between

the group nodes and the object nodes indicate that a varying number of each group

node may be present, and the number of object nodes they are comprised of can vary

as well. The number of objects within each group and number of groups in the scene

are our implicit Or nodes in the model, while the groups and objects themselves are

the And nodes.

The aerial image hierarchy is similar to our object grammar, where the scene node

decomposes into a variable number of object groups, which in turn decompose into a

variable number of objects. This captures the loose, variable nature of aerial images

with just a few compact rules. If we were to write these expansions in a grammar
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Groups

Objects

Scene 

Scene

Roofs RoadsParking 
Lots

Trees Cars

Tree
Parking 

Lot CarRoadRoof

Primitives/
Features

Hierarchy nodes

Terminals

Bag-of-Textons Line segments Haar Features

N-ary Decompositions

Contextual relations

Figure 3.6: A contextual hierarchy for aerial images. Instead of having a small set

of specific parts, common objects (e.g. cars, roads, trees) are grouped hierarchically.

Statistical constraints exist between objects and groups. The individual objects can be

decomposed further, like roofs, into more detailed compositions.
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format, we would write

Scene→ (Roads∗) ∪ (Roofs∗) ∪ (Trees∗) ∪ (ParkingLots∗) ∪ (Cars∗) (3.34)

Roads→ Road∗

Roofs→ Roof ∗

Trees→ Trees∗

Parking Lots→ Parking Lot∗

Cars→ Car∗ .

Here we’re using “∗” in the regular expression sense, meaning 0 or more of an object.

One could rewrite the “∗” operator by enumerating all cases, as in

Roads→∅|Road|(Road)(Road)|(Road)(Road)(Road)|... (3.35)

Figure 3.7 shows an example of parsing an aerial image using this model. The orig-

inal image (a) is decomposed into individual objects (b) that are then grouped together

via statistical relationships into a parse graph of the scene (c). The dashed horizon-

tal lines show the relationship constraints between groups and objects. Figure 3.7(d)

shows which objects would be related by certain relationships, such as alignment and

relative position.

In object modeling, our Or nodes indicated which type of object part a node would

decompose to. In aerial image modeling, our top-level Or nodes describe the number

of groups each scene decomposes to and, in turn, the number of objects each group

decomposes into. Beyond the object level one can include additional And and Or nodes

to describe the variation in each object’s appearance as we did for object modeling.

We will discuss the implementation of the object representations in Section 5.2.2 and

relationships in Section 5.2.3.
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Roof RoofTree Tree
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Road Road
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Scene
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(a) Original Image (c) Hierarchical Parse
(d) Relationships

Interclass Position

Aligned Objects

Interclass Containment

(b) Detection Results

Figure 3.7: An example of parsing an aerial image with the contextual hierarchy. (a)

Original image (b) Objects are detected in the image (c) Objects are grouped via statis-

tical constraints according to the model to form a parse of the scene. Dashed horizontal

lines indicate constraints between groups and objects. (d) Objects related by certain

types of relationships.
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CHAPTER 4

Learning via Minimax Entropy

In this chapter we present an efficient minimax entropy algorithm for both learning

which relationships are relevant for modeling each category and estimating the rela-

tionship parameters.

4.1 Maximum Likelihood Estimation

We begin with a set of N obs images Iobs = {Iobsi : i = 1, 2, . . . , N obs} and their

corresponding parse graphs PGobs = {pgobsi : i = 1, 2, . . . , N obs}. The parse graphs

PGobs follow the real-world, unknown target distribution, f(pg), by definition,

pgobsi ∼ f(pg) . (4.1)

Matching our distribution p(pg) to f(pg) is equivalent to finding the values for Θ that

minimize the KL divergence between the two distributions

Θ∗ = argmin
Θ
KL(f(pg)||p(pg; Θ, R)) (4.2)

= argmin
Θ

∑
pg

f(pg) log
f(pg)

p(pg; Θ, R)
,

which is equivalent to finding the maximum likelihood estimates for Θ and a set of

relationships R constraining the model. Letting L(Θ) be the log-likelihood function
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for our parameters,

L(Θ) =
Nobs∑
k=1

log p(pgk; Θ, R) (4.3)

=
Nobs∑
k=1

− logZ[Θ]−
N(V Or)(pgk)∑

i=1

< λ
(α)
i , H

(α)
i (pgk) > − (4.4)

N(R)(pgk)∑
j=1

< λ
(β)
j , H

(β)
j (pgk) >

(Θ,R)∗ = argmax
(Θ,R)

L(Θ) . (4.5)

Learning our parameters can then be broken down into two distinct stages:

1. Given a set of relationships R in the model, estimate (λ(α), λ(β)) for each Or

node and each relationship.

2. Pursue a set of relationships R one-by-one to constrain the model.

Learning in this order may seem backward, but it is easier to understand the process

if we first show the process for parameter estimation given a set of relationships R

followed by the process for pursuing R.

4.2 Learning (λ(α), λ(β))

We solve for Θ = (λ(α), λ(β)) using straightforward maximum likelihood estimation

(MLE). Setting ∂L(Θ)
∂Θ

= 0, we can solve for both sets of λ’s:

1. λ(α): We have decided to treat each λ(α)
i as into the summation to get L(Θ) =∑N(V Or)(pgk)

i=1 − < λ
(α)
i , logH

(α)
i (pgk) >. The derivative ∂L(Θ)

∂λ(α) = 0 resolves to λ(α)
i =

− logH
(α)
i (PGobs). While we independent of other λ(α)

i ’s. As such, we can move

the log() in our likelihood function have discussed that we are modeling H(α)
i as the
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frequencies of occurrence of each Or node decomposition, we prove it more formally

here.

The histogramH
(α)
i (PGobs) is the empirical distribution of all the possible Or node

decomposition for Or node vi ∈ V Or. Thus,

H
(α)
i (PGobs) ≈ p(ω(vi)) , (4.6)

where p(ω(vi)) is the probability distribution over the switch variable ω(vi) at node

vi ∈ V Or. We can model our switch variables as simple multinomials. Letting θij be

the probability that ω(vi) takes value j, and nij the number of times we observe this

production, we can rewrite p(ω(vi)) as

p(ω(vi)) =

N(ω(vi))∏
l=1

θ
nij
ij , (4.7)

where N(ω(vi)) is the number of values ω(vi) can take. We can plug this back into

our prior and take the logarithm and derivative as before, this time with respect to our

multinomial parameter θij . Introducing Lagrange multipliers γ gives

∂L(Θ)

∂θ
= −N ∂ logZ[Θ]

∂θ
−

Nobs∑
k=1

N(V Or)(pgk)∑
i=1

N(ω(vi))∑
j=1

nkij
θij
− γ = 0 (4.8)

γ(

N(V Or)(pgk)∑
i=1

N(ω(vi))∑
j=1

θij − 1) = 0 (4.9)

Solving for the Lagrange multiplier and substituting into Equation 4.8 gives

θ̂ij =
−

∑Nobs

k=1 n
k
ij

Nω(vi) −N obs ∂ logZ[Θ]
∂θ

+N obs ∂ logZ[Θ]
∂θ

=
Nij

Nω(vi)

(4.10)

where Nω(vi) is the sum over all values of node vi in all graphs in PGobs. One can see

that the estimator θ̂ is merely the sample frequency at each Or node. We can estimate

the Or node probabilities by counting the number of times each Or node decomposes

into each value divided by the number of times we see it decompose into anything.
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Thus, eachH(α)
i is estimated simply by the counts of all possible ω(vi) decompositions

and, because λ(α)’s are independent of each other and of the λ(β)’s, we can estimate

them simply by

λ
(α)
i = − logH

(α)
i (PGobs) . (4.11)

This is the MLE estimate for a multinomial and can be used to estimate production rule

probabilities in grammars given that they are independent of any cross-link relations,

i.e. context-free (Chi and Geman, 1998).

2. λ(β): Setting ∂L(Θ)

∂λ(β) = 0 yields

∂L(Θ)

∂λ
(β)
j

= − 1

Z[Θ]

∂Z[Θ]

∂λ
(β)
j

− Ef [H(β)
j (PG)] (4.12)

= Ep[H
(β)
j (PG)]− Ef [H(β)

j (PG)] (4.13)

which can be approximated as

∂L(Θ)

∂λ
(β)
j

≈ H
(β)
j (PGsyn)−H(β)

j (PGobs) . (4.14)

H
(β)
j (PGsyn) is the histogram formed from a set of parse graphs PGsyn = {pgsyni : i =

1, 2, . . . , N syn} that are synthesized from our current model p(pg) for relationship rj .

The synthesized parse graphs are drawn by first sampling the number of children each

node decomposes into according to the learned λ(α) parameters. The appearances of

the objects in the resulting parse tree are then Gibbs sampled according to the current

λ(β) weights and the constraints in the model. The resulting parse graphs will be

images, so we can compute histograms for the same relationship functions f() over

these parse graphs as we did over PGobs. Thus H(β)
j (PGsyn) is a measure of the

statistics recreated from our model.

Solving for the λ(β)’s such thatH(β)
j (PGsyn) = H

(β)
j (PGobs); ∀j can then be done

using gradient ascent. We initialize the λ(β)
j weights to 0

λ
(β)
j = 0, j = 1, 2, . . . , N(R). (4.15)
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In the first stage when λ
(β)
j = 0, H(β)

j (PGsyn) will be close to uniform. Gradient

ascent is then used to update the λ(β)’s,

λ
(β)(t+1)
j = λ

(β)(t)
j − η|H(β)

j (PGsyn)−H(β)
j (PGobs)| , (4.16)

where η is a step factor that can depend on the iteration t and the distance between

histograms can be measured using L1, L2, or another distance metric. This update

reweights the λ(β)’s for each histogram based on how much H(β)
j (PGsyn) differs from

H
(β)
j (PGobs) for each relationship rj . It reduces the energy for choosing underrepre-

sented bins and increases the energy for choosing overrepresented bins during the next

iteration of Gibbs sampling. After a number of iterations the λ(β)’s will be weighted

such that the synthesized distributions match the observed distributions, and thus p(pg)

will match f(pg) along these dimensions. We run gradient ascent until all the statistics

of the PGsyn sampled from our model match the observed statistics to within some

distance ε2,

|H(β)
j (PGsyn)−H(β)

j (PGobs)| < ε2, j = 1, 2, . . . , N(R). (4.17)

Figure 4.1 shows a toy example of the λ(β) learning process. We begin with one

observed histogramH
(β)
j (PGobs) for relative car size and its corresponding λ(β)

j weight

vector, which begins as a vector of all 0’s. Because this weight is uniform, the images

we sample in Step (2) look fairly random. In Step (3) we compute H(β)
j (PGobs), the

distribution of relative car sizes across these sampled images. This, unsurprisingly, is

fairly uniform as well because λ(β)
j was uniform. The figure shows these H(β)

j (PGsyn)

and H(β)
j (PGobs) superimposed below to emphasize the difference in their bin counts.

In Step (4) we update the λ(β)
j weights according to how much each bin differs. Step

(5) shows the sampled images resulting from the updated λ(β)
j weighting, which have

much more appropriate relative car sizes. This process is carried out simultaneously

for each λ(β)
j such that the statistics for every relationship in the model matches the

observed statistics.
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Figure 4.1: Examples of learning the relationship parameters, λ(β)
j . (1) We begin with

an observed histogram H
(β)
j (PGobs), in this case the relative size between cars. λ(β)

j

begins uniform. (2) Sampled images PGsyn are drawn from the model. (3) Hsyn is

computed for relative car size over the sampled images. (4) λ(β)
j is reweighted ac-

cording to the difference between H(β)
j (PGobs) and H(β)

j (PGsyn). (5) Newly sampled

images appear scaled correctly.

4.3 Relationship Pursuit

The λ(β)’s above were learned given that we already knew which relationships R ex-

isted in the model. We now show how to select the relationship constraints for the

model. Because our dictionary of potential relationships ∆R could be combinatori-

ally huge, we will iteratively add relationships according to their importance instead

of fitting the full model. Fitting the full model would require later attempts to sample

from the model or perform inference with the model to check redundant relationships,

making the model overly complex and slower to compute with.
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We pursue the relationship set R by beginning with just an empty hierarchy,

p0(pg; Θ0, R0); R0 = {∅} . (4.18)

This is the model with no parameters learned at all. We then learn the λ(α)’s, or tree

parameters, using Equation 4.11, allowing us to sample images with the correct distri-

butions of objects but without spatial or appearance constraints. Sampling the model

at this stage would produce parse graphs with the correct number of objects, but with-

out horizontal constraints, causing the resulting image to look more like an “alphabet

soup” of objects that are big, small, overlapping, etc. We then iteratively add a new

relationship r+ from a dictionary of potential relationships ∆R at each iteration to get

a new distribution p+(pg; Θ+, R+), R+ = R ∪ {r+}. We choose r+ such that we

minimize KL(f(pg)||p+(pg; Θ+, R+)) at each step:

p0(pg; Θ0, R0)→ p1(pg; Θ1, R1)→ . . .→ pk(pg; Θk, Rk) . (4.19)

At each iteration we want to select the relation r+ that brings our new model p+ closest

to f . We can measure how far our current model is from the target distribution f using

the Kullback-Liebler (KL) divergence (Kullback and Leibler, 1951). We want to find

the new p+ that brings our model closest to the target distribution. Finding the p+ that

is closest to f is equivalent to finding the p+ that brings our model the furthest away

from the current model p. The relation r+ that is maximally far away from p must also

be maximally close to f and thus represents the largest decrease in KL divergence:

r+ = argmax
r
KL(f(pg)||p(pg; Θ, R))−KL(f(pg)||p+(pg; Θ+, R+)) (4.20)

= argmax
r
KL(p+(pg; Θ+, R+)||p(pg; Θ, R)) .

See Appendix A for the derivation of Equation 4.20. One can see that minimizing the

KL divergence between f and p+ is equivalent to minimizing the entropy of p+, and

must thus monotonically decrease at every iteration by adding new features.
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Figure 4.2: A visualization of the relationship pursuit procedure. The histograms over

PGobs are computed and compared against the histograms over PGsyn, which are

sampled from the current model p(). The pair of histograms with largest Mahalanobis

distance correspond to the relationship with most information gain r+ that we should

next add to the model.

The KL divergence is non-trivial to compute given that our model p(pg; Θ, R)

has an intractable normalization constant in front of it and a different set of param-

eters from p+(pg; Θ+, R+). Using a property of the relationship pursuit, however, we

can approximate the decrease in KL divergence, otherwise knows as the information

gain, δ(r+), using the Mahalanobis distance between the synthesized and observed

histograms for the new potential relation r+

δ(r+) = KL(p+(pg; Θ+, R+)||p(pg; Θ, R)) (4.21)

≈ dmahn(H
(β)
+ (PGobs), H

(β)
+ (PGsyn)) .

This holds due to a Taylor expansion around the relationship we’re interested in adding,

as shown in Appendix B.

In order to find the best new relationship to add to our model at a given iteration,

we measure H(β)
j (PGobs) and H(β)

j (PGsyn) for all relations rj ∈ ∆R and compare

their Mahalanobis distances. The r+ with the largest Mahalanobis between the syn-
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thesized and observed histograms above some threshold is added to the model in the

next iteration and its λ(β)
+ parameters are learned as in the previous section. The pursuit

ends when δ(r+) < ε1. Figure 4.2 gives a high level visualization of the relationship

pursuit process.

4.4 Summary of Parameter Learning and Relationship Pursuit Al-

gorithms

The algorithm for learning the parameters of the model proceeds in two steps. We first

learn the λ(α)’s by MLE, which are just the sample frequencies of the decompositions

of each node. We then iteratively add spatial and appearance relations one-by-one

until no relation remaining in ∆R has Mahalanobis distance greater than ε1. After

each relation is added, we iteratively update the λ(β)’s for the current relation set to

match H(β)
j (PGsyn) to H(β)

j (PGobs), ∀rj ∈ R. The algorithms are outlined below:
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Algorithm 1. Relationship pursuit.

1. Begin with an empty model p0 and observed parse graphs PGobs = {pgobsi :

i = 1, 2, . . . , N obs}.

2. Compute observed histograms H(β)
j (PGobs) and H(α)

j (PGobs) for all rela-

tionships rj ∈ ∆R and all node frequencies for vi ∈ V Or, respectively.

3. Approximate the λ(α)’s for the tree component using the sample frequen-

cies from MLE.

4. Repeat

(a) Sample N syn parse graphs from the current model, PGsyn = {pgsyni :

i = 1, 2, . . . , N syn}.

(b) Calculate H(β)
j (PGsyn), rj ∈ ∆R.

(c) Select the relationship rj for which

dmanh(H
(β)
j (PGsyn), H

(β)
j (PGobs)) is maximal as r+. Add r+

to R.

(d) Relearn the λ(β)’s for the new set R+ = R∪ {r+} using Algorithm 2.

until dmanh(H
(β)
j (PGsyn), H

(β)
j (PGobs)) < ε1, rj ∈ ∆R.
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Algorithm 2. Parameter estimation algorithm.

1. Given a set of relations R and current model p(pg; Θ, R),

2. Repeat

(a) Sample N syn parse trees from the model, PGsyn = {pgsyni : i =

1, 2, . . . , N syn}.

(b) Calculate H(β)
j (PGsyn), j = 1, 2, . . . , N(R).

(c) Update λ(β)(t+1)
j = λ

(β)(t)
j − η|H(β)

j (PGsyn) − H
(β)
j (PGobs)| j =

1, 2, . . . , N(R).

until |H(β)
j (PGsyn)−H(β)

j (PGobs)| < ε2, j = 1, 2, . . . , N(R).
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CHAPTER 5

Experiments on Learning and Sampling

To validate our learning algorithm for object modeling we present intermediate results

of the learning process and show that samples drawn from our model are visually

similar to the original training data, yet are completely novel unique objects that were

never seen before by the model.

5.1 Experiments on Object Learning

In our first experiment we applied our algorithm to the task of learning the appearances

of visual object categories.

5.1.1 Data Collection

To train our model we collected images for 24 different object categories. Each object

category consisted of between 20 and 40 images taken under different poses and con-

ditions. Each image consisted of an individual object. For each object category, we

identified a set of archetypal parts (e.g. the teapot class consisted of (handle, base, lid,

spout)) and labeled the corresponding object boundaries in each image.
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5.1.2 Object Representation

Each object part is described by a boundary b that is defined as a graph,

bi =< νi, ζi, li >, (5.1)

where ν is a set of boundary points and ζ is a set of edges, along with a label li

indicating what type of part it is. The boundaries and labels are hand-labeled in every

observed image Iobs. These objects form the bottom layer of the hierarchy. We create

a node vi in the contextual hierarchy for each boundary bi so that every boundary is

represented by a bottom-level node in the hierarchy and every bottom-level node in the

hierarchy has a corresponding boundary representation.

Boundary Attributes

From the boundaries we can derive the appearance attributes φ(vi) = φ(bi) = {Xi, θi, σi}

of each boundary bi for each bottom-level node vi in the hierarchy. The smallest en-

closing bounding box, boxi, was computed for each bi. The position of each part is its

center of mass, its orientation is the major axis of boxi, and its scale is the length and

width of boxi, treating the major axis as our measure of length and the minor axis our

measure of width. If boundary bi for node vi consists of n vertices ν = {ν1, ν2, . . . , νn}

and (lefti, righti, topi, bottomi) describe the center points of the edges of bi’s bound-

ing box boxi, we can compute each part’s appearance attributes as,

Xi = (

∑n
j=1 x(νj)

n
,

∑n
j=1 y(νj)

n
) (5.2)

Maxis = max((righti−lefti), (topi − bottomi)) (5.3)

maxis = min((righti−lefti), (topi − bottomi)) (5.4)

θ = cos−1(Maxis, (1, 0)) (5.5)

σ = (|Maxis|, |maxis|) . (5.6)

Figure 5.1 shows an example of the representation of an abstract part based on these
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Figure 5.1: An example of the features computed for a single object. The boundary

graph and smallest enclosing bounding box are used to compute position, scale, and

orientation.

features.

Bonding Points

In order to make sure that certain object parts link together smoothly, we select a

subset of the boundary points zi ⊆ νi that are common across object boundaries of

the same type to act as bonding points. These bonding points represent the template

points of each part, and attempt to capture the salient defining points for each type of

boundary. Figure 5.2 shows examples of common bonding points for three types of

parts. The bottom of each teapot spout, regardless of the rest of its shape, is indexed by

the same type of bonding point. These templates of bonding points allow us to measure

tighter relationships between object parts, as we can focus on the relationships between

specific shape points, instead of amorphous common points, like centroids, which may

vary drastically depending on the shape of each part.

All boundaries of the same part type pj (e.g. all clock hands) can be grouped into
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Figure 5.2: Examples of corresponding bonding points for each terminal type.

the set Bj ,

Bj = ∪bi;∀li = j (5.7)

For each part categoryBj we created a set of bonding pointsBPj that define key shape

features, such as high curvature.

BPj = {bpjk; k = 1, 2, ..., n} . (5.8)

These bonding points define a template of keypoints for a specific part type j. Each

boundary of the same type bi ∈ Bj may have a varying number of points on its bound-

ary, so we must define a mapping M from BPj to each boundary’s specific points:

zi = M(j, k, bi) = νi(bpjk) . (5.9)

In other words, for each bonding point in the template set BPj , we have an index to a

point in each template bi with label li = j that corresponds to that point.

The bonding points are determined automatically by matching every shape bi ∈ Bj

to the first boundary in that set b0 ∈ Bj using shape context (Belongie et al., 2002).

Any points that are matched across all instances are retained as bonding points and

their indices recorded in the mapping function M().
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Figure 5.3: Examples of relationships between object parts that could exist in our

model.

5.1.3 Relationship Functions

Figure 5.3 shows the relationship constraints that we model between object parts. The

relative position, orientation, and scale of object parts is critical for learning the ap-

pearances of different objects. We also include higher level relationships such as con-

tainment, concentricity, and whether two parts abut. With these relationships, we can

capture statistical constraints between the object parts so that we can sample new in-

stances of that object class and recognize instances in new images. In this work we

will focus mostly on low level relationships. All of our images used for training taken

under similar positional conditions, i.e. each photograph is taken from ground-level,

not overhead, so there are strong correlations between relative part positions in the X

and Y directions individually. We therefore model scale and position relationships in X

and Y independently. Table 5.1 shows the equations used to compute the relationship

values between pairs of parts.

5.1.4 Parse Graph Construction

We define our grammar such that there are no ambiguous parse graphs. This is simple

to achieve simply be ensuring that no node has more than one parent. We can then

generate a parse graph for an image just from the labeled parts of the object, as in
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Table 5.1: Object relationship function definitions.

Relationship n Nodes Function fi()

Aspect ratio 1 σy/σx

Position X 2 (Xx2 −Xx1)/σx1

Position Y 2 (Xy2 −Xy1)/σy1

Scale X 2 σx1/σx2

Scale Y 2 σy1/σy2

Relative orientation 2 θ2 − θ1

Contained 2 Areaoverlap/Area1 = 1

Concentricity 2
√

(X2 −X1)2 + (Y2 − Y1)2

Butting 2 |X2 −X1| < ε1&||θ2 − θ1| − 90| < ε2

Figure 3.5(b). Each labeled part in an image maps to a node in the contextual hierarchy

and we derive the parse tree as the tree formed by the nodes of the present. Once the

tree is determined any relationships can be measured between pairs or sets of object

parts in the tree to form the horizontal edges.

5.1.5 Learning the λ() Parameters

Histogram Representation For Relationships

We have chosen to represent our relationship statistic distributions as histograms. This

is intended to save us the trouble of fitting specific distributions to each new relation-

ship. In order to use histograms, we made the following design decisions:

1. The range of the histograms are determined by the maximum and minimum

values observed in the training data. We model values outside of this range by

a decreasing gradient function. Define the maximum probability value allowed
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for this gradient function as p and the width of the histogram bin as w. Then a

point that is distance k bin widths beyond the edge of the histogram (i.e. k ∗ w

distance from the edge) can be assigned probability p − (k/n) ∗ p, where n is

as many extra bins as we’d like to add to either side of our histogram. Thus,

values that are beyond the histogram edge are assigned a probability that is a

fraction of the maximum probability p, depending on how far away they are. n

is usually set to be something large, e.g. 10000, and p is usually set to be the edge

bin probability, which prevents the tail from being greater probability than the

probability in the edgemost bins. Values greater than n are assigned probability

0 (or some minimum probability). These tails allow us to model values outside

of the histogram range while guaranteeing that their probability is never greater

than the probability for the edge closest to that side.

2. We divide our histograms into 10 bins each. We were surprised to find that,

empirically, any number of bins above 6-7 were sufficient to produce samples

from the model that are perceptually similar to real images. Obviously we will

never perfectly match the distributions with this discretization until we approach

the limit, but we find suitable results with even as few as 10 bins.

Results of Histogram Learning

Figure 5.4 shows a sample of five relationship histograms learned by our model for

the “teapot” object class, Scale X, Scale Y, Position X, Position Y, and butting. The

dark black line shows the true observed distribution for each relationship, which is

ultimately the statistic we would like to recreate. The dotted blue line shows the recre-

ated distributions from our model after the first iteration. We can see that our recreated

distributions are not at all close to the true statistics from the real world before the

λ() parameters are learned. By the final iteration, however, we have matched the true

distributions almost exactly, as shown by the red dotted lines. These plots show that,
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Figure 5.4: Histograms for five relationships for the teapot class during the learning

process.

given a set of relationships R, our learning algorithm can learn weight vectors that

accurately reweight the distributions until our model recreates the real world statistics

for the object class. Because our generated relationship distributions match the true

relationship distributions, we know that our model of objects must look similar to true

objects, at least along those dimensions. Thus, our model has captured what is most

salient about object categories and recreated it.

5.1.6 Relationship Pursuit

One way to test the validity of our model is to draw samples from it as in Section

4.2 and see how visually similar samples from our model are to real world objects.

Figure 5.5 shows samples drawn from the bike and clock categories at various iter-

ations of the relationship pursuit. We can see that, during the early iterations, when

we’ve only added a few relationships, the scale, positions, and orientations of the part

are seemingly random. As we add more relationships, however, the objects become

increasingly coherent until, by the end of the relationship pursuit, the objects that we

observe are similar to real world objects. To the right of each row is a plot of the

Kullback-Liebler (KL) divergence between the model at each iteration and the true

distribution. We can see that the first few relationships reduce the KL divergence most

significantly. Toward the end of the relationship pursuit the algorithm adds relation-
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Figure 5.5: Examples of clocks and bicycles drawn from our model during different

stages of the relationship pursuit. Estimated Kullback-Liebler divergence between the

target distribution and the current model is shown on the right as measured by the

information gain at each iteration.

ships with lower information gain. We can see that the KL divergence is monotonically

decreasing over time.

5.1.7 Analysis by Synthesis

Figure 5.6 shows sampled objects from 24 categories of objects alongside original

images from that class. The outlined objects are generated by sampling object parts

according to their learned relationships. We can see that the resulting objects are very

similar to the object class from which they originate even though they are completely

novel instances of each object. The realism of each object category verifies that the
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Figure 5.6: Examples of objects sampled from our model for 24 different object cate-

gories. The samples selected look very similar to the original images, though they are

novel instances.

model is capturing the relevant statistics for each object category.

5.1.8 Small Sample Set Generalization

One of the main features of our model is its ability to learn representations from a

small sample set as well as its ability to generalize to a combinatorial number of novel

instances. Thus, we can learn the model from a small training set, yet still recognize

objects in a testing set that were never seen before. To demonstrate this ability, we

first show the minimum training size needed to learn a category. In this experiment,

we divide each category’s data into a training and testing set, Ωtrain, Ωtest. For a

given k, 0 < k ≤ N , we determine the subset of size k ∈ Ωtrain that produces

the most coverage of the testing set. Coverage is measured by drawing N samples

Ωsample = {s1, s2, . . . , sN} from the model learned from the subset k and measuring

c =

∑N
i=1 1(si ∈ Ωtest)

|Ωtest|
(5.10)
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i.e. what percentage of the test set appeared in our sample set. For an instance in the

sample set and the test set to be considered equal, they must be composed of the same

types of leaf nodes and satisfy the relational constraints of the model. In effect we are

measuring how many instances we need to learn in order to be able to recreate all the

instances in both the training and testing set. The optimal subset is the smallest subset

of training examples from which we can learn a model that recreates all the instances

in the class.

To determine the optimal subset of size k, we begin with an arbitrary k samples

and compute c. We then randomly swap an instance from the sample set with another

instance from the training set, relearn the model, then recompute c′. If c′ > c, we

accept the change, otherwise we revert to our old sample set. This continues for n =

1000 iterations. In effect we are probabilistically searching for the subset of size k that

creates the best coverage for each value of k.

Figure 5.7 shows the coverage results for a sample of categories as k increases.

We can see that very few training instances are required to learn a model with all the

expressability of one learned with many. This implies we may need very few instances

in an unsupervised framework to learn the maximally powerful model. Obviously there

are some instances with parts that we’ve never seen in the testing set, so it may not be

possible for each category to reach 100% coverage. Were we to unite the training and

testing set, we could cover these outliers as well.

To demonstrate the generalizability of the model, Figure 5.8 shows the smallest

subset for the lamp category that achieved maximal coverage, along with instances

drawn from the learned model. Only 6 training samples are needed, yet their parts

can be reconfigured and adjusted according to the model to produce radically different

instances from the training set. Note that the part configurations and appearances in the

samples differ greatly from those in the training set, yet the objects are still coherent.
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Bike Car Lamp

Mug MP3 Player Teapot

Figure 5.7: Coverage results for 6 categories showing number of reproducable in-

stances against training size. Only a small set of data is needed to learn the most

expressive model.

This is useful for recognition tasks, where new instances can be recognized despite not

appearing in the training data. One can also generate large amounts of training data

for discriminative tasks using this model, learned from a small, easily obtained set of

images.

5.2 Learning Results for Aerial Images

We also tested our learning algorithm for aerial image modeling. We deterministically

constructed parse graphs from labeled images and then were able to show convergence

of the relationship histograms and realistic sampling results.
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Training Set

Figure 5.8: Demonstration of the model’s generalizability. The model learned from

only 6 training instances can produce the varied samples below.

5.2.1 Data Collection

We selected 120 aerial images from the Lotus Hill Database (Yao et al., 2007), which

included labeled boundaries of roofs, roads, parking lots, tree regions, and cars to use

as our training data 1 These boundaries are hand-labeled. The images ranged in size

from 640x480 pixels to 1000x1000 pixels.

5.2.2 Object Representation

We represent our five object categories, (roads, trees, roofs, cars, parking lots), by their

enclosing boundaries, just as in Section 5.1.2. We do not need bonding points for aerial

1Dataset available from http://www.imageparsing.com. More data will be released after the publica-
tion of this dissertation, but sample data is available free for downloading now.
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Table 5.2: Relationship function definitions.

Relationship n Nodes Function fi()

Aspect ratio 1 σy/σx

Relative position 2 (X2 −X1)/s1

Radial position 2 { |X2 −X1|, θ(|X2 −X1|) - θ1 }

Relative scale 2 s1/s2

Relative orientation 2 θ2 − θ1

Percentage overlap 2 Areaoverlap/Area1

Alignment n SSE of least squares fit

images, however, as the parts we are modeling are individual objects that do not need

to be tightly bonded.

5.2.3 Relationship Functions

The functions fi for each relationship are defined over the attributes of sets of nodes,

φ(Vi). We implemented the relationship functions listed in Table 5.2. Relative posi-

tion returns the vector between the centers of the two objects, which is relative to the

coordinate frame of the image. This is not particularly useful as aerial images rarely

have a well-defined “top” or “bottom”. Similarly we do not use Position X/Y or Scale

X/Y relationships as we did for objects, as the X and Y coordinate frame is not fixed

when we are modeling overhead images. Radial position attempts to deal with this by

measuring relative distance in polar coordinates. Figure 5.9 shows a visualization of

some of the relationships we measure between objects.
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Figure 5.9: Visualizations of inter-object relationships used during aerial image mod-

eling.

5.2.4 Deterministically Forming Parse Graphs

Each Iobs has a corresponding parse graph pgobs describing the hierarchical arrange-

ment of its objects. Unlike object parse graphs, which tend to have a small number of

specific leaf nodes, we need to determine higher-level group nodes for the aerial image

case.

We are given the boundaries of every object as described in Section 5.2.2. To

form parse graphs from a collection of labeled objects (the leaf nodes) we make the

following stipulation:

Proposition 1 Boundaries within distance % of each other that are of the same

object label will be considered members of the same group.

In other words, objects are deterministically assigned to groups according to their

distance between one another. This provides two benefits:

1) We can deterministically form a hierarchy from a flat set of objects.

2) We only measure relationship statistics within and between groups of objects, so

limiting the distance at which two objects are related prevents us from calculating and

learning statistics of objects that are very far away.

In our experiments we set % to be label-dependent. If we let s be bi’s aspect ratio,

we can define a set of distance thresholds as in Table 5.3. For example, a tree would
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Table 5.3: Category-dependent distance thresholds % for deterministic grouping based

on an object’s aspect ratio s.

Object Label %

Roof(s) s

Car(s) 0.5*s

Tree(s) 1.2*s

Road(s) 0.5*s

Parking Lot(s) s

need to be within 1.2 of its aspect ratio of another tree to be considered in the same

group. Because some objects within the same label may vary significantly in size, one

may also choose to consider two objects proximal only if they are within c∗min(s1, s2)

of each other, where (s1, s2) are the aspect ratios of the two objects in question. This

is particularly useful when determining which groups of objects should be associated,

as their sizes can vary significantly more than those of single objects.

Figure 5.10 shows an example of deterministically forming a parse graph from a

set of labeled objects. In this example, cars that are nearby one another are grouped

together, as shown in (a). The same goes for roofs labeled in (a). Figure 5.10(b) shows

the resulting groups from this first step and their distance-based relationships as well.

An important point to note here is that, though we form parse graphs deterministi-

cally for our observed images, we do not form them deterministically when inferring

the best explanation of a new image. In our training images Iobs we are making the

assumption that proximal objects are grouped and that this grouping defines the num-

ber of objects that the group consists of (decomposes into). There may, however, be

proximal groups in our testing images that have, for example, a different number of
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(b)  Network structure between grouped objects

Object/Group boundary Object/Group center Neighborhood Edge

(a)  Network structure between single objects

Figure 5.10: An example of deterministically forming the neighborhood structure for

a parse graph from labeled objects. (a) Cars and roofs that are within a certain distance

of each other are grouped together. (b) Groups that are within a certain distance of

each other have group-level constraints applied.

66



First Iteration

Intermediate 
Interation

Final Iteration

Road/Car 
Overlap

Car/Building 
Relative Scale

Parking Lot/Car 
Overlap

Building/Road 
Orientation

Observed histograms Synthesized histograms

Figure 5.11: Histograms for four typical relations over the course of the learning algo-

rithm. The black lines are the histograms of the observed data, H(β)(PGobs), and the

red lines are the histograms of the synthesized data, H(β)(PGsyn), at each iteration. At

first the statistics of the synthesized data are so far off from the truth that most values

are out of bounds. Halfway through the learning process the histograms look close to

matching and by the final iteration the histograms match nearly perfectly.

objects than we expect to see based on our training data. In this case, it may make more

sense to split the group into subgroups that match our learned decomposition frequen-

cies than grouping them all under a hard-coded proximity condition. In a world where

we’ve only seen sets of three cars, a row of six cars is more consistently explained as

two sets of three by our model.

5.2.5 Learning the λ() Parameters

We use a histogram representation as we did in Section 5.1.5. We use 10 bins again

and a decreasing gradient function at the ends of the histogram to represent vanishing

probabilities in the tails.

We set ε1 = 4 and ε2 = 0.2 for Algorithms 1 and 2 and then learn a hierarchical

contextual model of objects in aerial images. Figure 5.11 shows H(β)(PGobs) and

H(β)(PGsyn) for four typical relations at three different iterations of the parameter
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learning algorithm. In the first iteration, the histograms from our synthesized images

are so far away from the true histograms that most of their data is out of bounds.

Halfway through the learning, however, the histograms start to look coarsely similar.

By the final iteration, the histograms have matched nearly perfectly. This assures us

that the λ(β)’s are reweighting the histogram bins correctly such that, over time, the

images we synthesize using our model match the statistics of true aerial images.

We used 5 object categories in our model (car, roof, road, parking lot, tree) and

their 5 corresponding group categories. We used 7 relationship functions in our model,

resulting in a relationship dictionary ∆R consisted of 360 possible relationships (10 as-

pect ratio relations + (5 objects)*(5 objects)*(7 relationships) + (5 groups)*(5 groups)*(7

relationships)). Of those 360 possible relationships our model selected 27, consist-

ing mostly of overlap relations (car/car overlap, building/tree overlap, car/parking lot

overlap), relative scale relations (car/car relative scale, roof/road relative scale), and

alignment relations (car/car alignment). There were also a few orientation relations

added, though they were only slightly better than noise (roof/road orientation) and

could probably be weeded out by adjusting ε1.

5.2.6 Analysis by Synthesis

Figure 5.12 shows samples from our final model for aerial images p(pg; Θ, R). The

resulting images appear similar to true aerial images, with objects obeying many of the

same spatial and appearance constraints that we observe in the real data. We see cars

appearing on roads, roofs arranged in blocks, and few or no spurious overlaps. Note

that these samples are not representative of a specific aerial image from the training

data or elsewhere. These are simply object boundaries that have been scaled, posi-

tioned, and oriented such that they minimize the energy in our prior. Nevertheless,

we see that the relationship histograms match between the two models and the sam-
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Figure 5.12: Samples from our learned aerial image model (blue = roofs, red = cars,

black = roads, green = trees). These are not images directly sampled from the training

data, but collections of objects obeying the statistics of our learned model. We can

create a vast amount of unique object configurations even though we’ve never observed

them directly.

pled images are perceptually similar to true aerial images. This shows that our learned

model is in fact capturing the relationship statistics present in true aerial images and

can thus recreate believable aerial image configurations.

5.3 Conclusions on Learning Experiments

We are very satisfied with the results of the learning algorithm for object modeling

and aerial image modeling. The histograms drawn from the model during learning

show that incremental updates of the λ() parameters enable the model to recreate the

expected statistics from the real world. In addition, the model is selecting an appro-

priate set of relationships and learning their parameters correctly, as evidenced by the

samples drawn from the model. We can see in the generated images that the rele-

vant patterns and appearances are beings learned and that the model has captured the
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essence of the patterns it has learned.
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CHAPTER 6

Inference With The C4 Algorithm

We must now tackle the difficult task of performing inference with the models learned

in Chapter 4. Given a set of part detections, whether these are object parts or individual

objects in an aerial image, our goal is to determine which subset of those parts, if

any, correspond to true objects and object parts. We present a novel probabilistic

cluster sampling algorithm, C4 , to efficiently find the subsets of parts that most likely

correspond to true detections. We will outline the motivation for this new inference

algorithm and then give its formal definition. We will conclude the chapter with an

analysis of C4 ’s performance on graph labeling and subset selection problems and

then show an extension to a hierarchical formulation for improved performance.

6.1 Introduction

We will begin with an introduction to the inference problem we are trying to solve and

a look at why conventional inference methods may not be the optimal choice for our

type of model.

6.1.1 Motivations and Objective

Many vision tasks, such as scene labeling (Kumar and Hebert, 2003; Porway et al.,

2008; Rosenfeld et al., 1976), object detection/recognition (Felzenszwalb and Hutten-

71



locher, 2005; Torralba et al., 2004), segmentation (Cormen et al., 1988; Tu and Zhu,

2002), and graph matching (Chui and Rangarajan, 2003; Lin et al., 2009) are formu-

lated as energy minimization (or maximum a posteriori probability) problems defined

on graphical models – Markov random fields (Besag, 1986; Geman and Geman, 1984),

conditional random fields (Kumar and Hebert, 2003; Lafferty et al., 2001), or hierar-

chical graphs (et al., 2004; Zhu and Mumford, 2006). These optimization problems

become exceedingly difficult when there are multiple solutions, i.e. distinct modes,

with high probabilities and in some cases equal probability.

Figure 6.1 shows examples of typical scenarios that have multiple, equally likely

solutions in the absence of further context. The top row shows the well-known Necker

Cube which has two valid 3D interpretations. The middle row is the Wittgenstein

illusion, in which the drawing can appear to be either a duck or a rabbit. Without

further context, we cannot determine the correct labeling. The bottom row shows an

aerial image for scene labeling. It can be explained as either a roof with vents or a

parking lot containing cars.

Computing multiple solutions is important for preserving the intrinsic ambigui-

ties and avoiding early commitment to a single solution which, even if it’s currently

the globally optimal one, may turn out to be less favorable when later context ar-

rives. However, it is a persistent challenge to enable algorithms to climb out of local

optima and to jump between solutions far apart in the state space. Popular energy

minimization algorithms, such as Iterative Conditional Modes (ICM) (Besag, 1986),

Loopy Belief Propagation (LBP) (Kumar and Torr, 2006; Weiss, 2000), and graph

cuts (Boykov et al., 2001; Kolmogorov and Rother, 2007) compute one solution and

thus do not address this problem. Existing MCMC algorithms, such as various Gibbs

samplers (Geman and Geman, 1984; Liu et al., 1995), DDMCMC (Tu and Zhu, 2002),

and Swendsen-Wang cuts (Barbu and Zhu, 2005; Swendsen and Wang, 1987), promise
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convex concaveNecker cube

duck/rabbit illusion

interpretation 1input

duck rabbit

interpretation 2

aerial image roof and vents parking lot and cars 

Figure 6.1: Examples of problems with multiple solutions: (top) the Necker Cube;

(Middle) the Wittgenstein illusion; and (Bottom) An aerial image intepreted as either

a roof with vents or a parking lot with cars. Ambiguities should be preserved until

further context arrives.
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global optimization and ergodicity in the state space, but often need long waiting time

in moving between distinct modes, which needs a sequence of lucky moves up the

energy landscape before it goes down.

Our objective is to develop an algorithm that can compute multiple solutions and

thus preserve the ambiguities on rather general settings:

1. The graph can be flat, such as MRF or CRF, or hierarchical, such as a parse

graph.

2. The graph may have positive (cooperative) and negative (competitive or conflict-

ing) edges for both hard or soft constraints.

3. The probability (energy) defined on the graph is quite general, even with energy

terms involving more than two nodes.

In vision, it is safe to assume that the graph is locally connected and we do not consider

the worst case scenario where graphs are fully connected.

6.1.2 Related Work in the Literature

In the 1970s, many problems, including line drawing interpretation and scene labeling,

were posed as constraint satisfaction problems (CSPs). The CSPs were either solved by

heuristic search methods (Pearl, 1984) or constraint propagation methods (Apt, 1999;

Mackworth, 1977). The former keeps a list of open nodes for plausible alternatives

and can backtrack to explore multiple solutions. However, the open list can become

too long to maintain when the graph is large. The latter iteratively updates the labels of

nodes based on their neighbors. One well-known constraint propagation algorithm is

the relaxation labeling method by Rosenfeld, Hummel, and Zucker in 1976 (Rosenfeld

et al., 1976).
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In the 1980s, the famous Gibbs sampler – a probabilistic version of relaxation la-

beling – was presented by Geman and Geman in 1984 (Geman and Geman, 1984). The

update of labels is justified in a solid MCMC and MRF framework and thus is guar-

anteed to sample from the posterior probabilities. In special cases, the Gibbs sampler

is equal to belief propagation (Pearl, 1984) for polytrees and to dynamic program-

ming in chains. The Gibbs sampler is found to slow down critically when a number

of nodes in the graph are strongly coupled. Figure 6.2 illustrates an example using the

Necker Cube where the six internal lines are divided into two coupling groups: (1-2-3)

and (4-5-6). Lines in each group must have the same label (concave or convex) to be

valid as they share the two ’Y’-junctions. Thus, updating the label of a single line in

a coupled group does not move at all, unless we update the label of the whole group

together, i.e. all six labels in one step. The problem is that we don’t know which nodes

in the graph are coupled and to what extent they are coupled for general problems

with large graphs. In 1987, a breakthrough came from two physicists, Swendsen and

Wang (Swendsen and Wang, 1987), who proposed a cluster sampling technique. The

Swendsen-Wang (SW) method finds coupled groups, called “clusters”, dynamically

by turning the edges in the graph on/off according to the probabilities defined on these

edges. The edge probability measures the coupling strengths. Unfortunately, their al-

gorithm only works for the Ising and Potts models. We will discuss the SW method in

later sections.

The 1990s were relatively quiet. There were numerous attempts made to improve

MCMC methods (see Liu (Liu, 2001) for surveys), such as the block Gibbs sam-

pler (Liu et al., 1995), which produced little improvement. Green formulated reversible

jumps in 1995 (Green, 1995) following the jump-diffusion algorithm by Grenander and

Miller in 1994 (Grenander and Miler, 1994). In 1999, Cooper and Frieze analyzed the

convergence speed of SW using a path coupling technique and showed that the SW

method has a polynomial mixing time when the nodes in the graph are connected to a
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constant number of neighbors (Cooper and Frieze, 1999).

In the 2000s, a few non-MCMC methods generated remarkable impacts on the

vision community. For example, the loopy belief propagation (LBP) algorithm by

Weiss et. al. (Weiss, 2000) and the graph cut algorithms by Boykov, Kolmogorov, et.

al.(Boykov et al., 2001; Kolmogorov and Rother, 2007). These algorithms are very fast

and work well on special class of graph structures and energy functions, but they do not

address the general problems, such as computing multiple solutions. On the MCMC

side, Tu and Zhu developed the Data-Driven Markov Chain Monte Carlo (DDMCMC)

algorithm for image segmentation in 2002 (Tu and Zhu, 2002), which uses bottom-up

discriminative probabilities to drive the Markov chain moves. They also developed a

“K-adventurer” procedure to keep multiple solutions. The DDMCMC method was also

used by Dellaert (Oh et al., 2005) for tracking bee dances. Dellaert also used MCMC

to explore correspondences for structure-from-motion problems, even incorporating

a “jump parameter” to allow the algorithm to jump to new solutions (Dellaert et al.,

2001). In 2005, Barbu and Zhu proposed the SW-cut algorithm (Barbu and Zhu, 2005)

which, for the first time, generalized the SW method to arbitrary probabilities models.

As we will discuss in later sections, the SW-cut did not consider negative edges, high

order constraints, or hierarchical graphs and is less effective in swapping between

competing solutions. The C4 algorithm in this chapter is a direct generalization of

the SW-cut algorithm (Barbu and Zhu, 2005).

6.1.3 Overview of the major concepts of C4

In this chapter we present a probabilistic clustering algorithm called Clustering Coop-

erative and Competitive Constraints (C4 ) for computing multiple solutions in graph-

ical models. We consider two types of graphs.
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- concave label                 - convex label

positive edge negative edge coupled states

state A state B

ccp1

ccp2

cccp

ccp2

ccp1

cccp

Figure 6.2: Swapping between the two interpretations of the Necker Cube. Locally

coupled labels are swapped with alternate labelings to enforce global consistency. See

text for explanation.

Adjacency graph where each node is an entity, such as a pixel, a superpixel, a line,

or an object, which have to be labeled in K-classes (or colors). Most MRF and CRF

used in computer vision are adjacency graphs.

Candidacy graph where each node is a candidate or hypothesis, such as a poten-

tial label for an entity, or a detected object instance in a window, which have to be

confirmed (’on’) or rejected (’off’). In other words, the graph is labeled with K = 2

colors.

As we will shown in Section 6.2.1, the adjacency graph can always be transferred to

a bigger candidacy graph. In both cases, the tasks are posed as graph coloring problems

on MRF, CRF or hierarchical graphs. There are two types of edges expressing either

hard or soft constraints (or coupling) between the nodes.
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Positive edge for a cooperative constraint that favors the two nodes having the same

label in an adjacency graph or being turned on (or off) simultaneously in a candidacy

graph.

Negative edge for a competitive or conflicting constraint that requires the two nodes

to have different labels in an adjacency graph or one node to be turned on and the other

turned off in a candidacy graph.

In Figure 6.2, the Necker cube is represented in an adjacency graph with each line

being a node. The six internal lines are linked by 6 positive edges (in green) and two

negative edges (in red and wiggly). Lines 2 and 4 have a negative edge between them

as they intersect with each other, as do lines 3 and 6. We omit the labeling of the six

outer lines for clarity.

In our formulation, the edges play computational roles, and are used to dynamically

group nodes which are strongly coupled. On each positive or negative edge, we define

an edge probability (using bottom-up discriminative models) for the coupling strength.

Then we design a protocol for turning these edges on and off independently according

to their edge probabilities respectively for each iteration. The protocol is common

for all problems while the edge probabilities are problem specific. This probabilistic

procedure turns off some edges, and all the edges that remain ’on’ partition the graph

into some connected components (ccp’s).

A ccp is a set of nodes that are connected by the positive edges. For example,

Figure 6.2 has two ccp’s: ccp1 includes nodes 1-2-3 and ccp2 includes nodes 4-5-6.

Each ccp is a locally coupled sub-solution.

A cccp is a composite connected component that consists of a number of ccp’s

connected by negative nodes. For example, Figure 6.2 has one cccp containing ccp1

and ccp2. Each cccp contains some conflicting sub-solutions.

At each iteration, C4 selects a cccp and updates the labels of all nodes in the cccp
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simultaneously so that (i) nodes in each ccp keep the same label to satisfy the positive

or coupling constraints, and (ii) different ccp’s in the cccp are assigned different labels

to observe the negative constraints.

Since C4 can update a large number of nodes in a single step, it can move out

of local modes and jump effectively between multiple solutions. The protocol design

groups the cccp’s dynamically and guarantees that each step follows the MCMC re-

quirements, such as detailed balance equations and thus it samples from the posterior

probability.

We evaluate C4 against other popular algorithms in the literature by two criteria.

1. The speed that they converge to solutions. In some studied cases, we know the

global minimum solutions.

2. The number of unique solution states generated by the algorithms over time.

This measures how “dynamic” an algorithm is.

The remainder of the chapter is organized as follows: In Section 6.2 we describe

the graph representation and an overall protocol for C4 . In Section 6.3 we introduce

the C4 algorithm on flat graphs and show the sampling of Potts models with positive

and negative edges as special case. In Section 6.4, we show experiments on generalized

C4 outperforming BP, graph cuts, SW and ICM for some segmentation, labeling, and

CRF inference tasks. We extend C4 to hierarchical graphs in Section 6.5 and show

experiments for hierarchical C4 . Finally we conclude the chapter with a discussion

of our findings in Section 6.6.
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6.2 Graphs, Coupling and Clustering

6.2.1 Adjacency and Candidacy Graphs

We start with a flat graph G that we will extend to a hierarchical graph in Section 6.5,

G =< V, E >, E = E+ ∪ E−. (6.1)

Here V = {vi, i = 1, 2, ..., n} is a set of vertices or nodes on which variables X =

(x1, ..., xn) are defined, and E = {eij = (vi, vj)} is a set of edges which is divided

into E+ and E− for positive (cooperative) and negative (competitive or conflicting)

constraints respectively. We consider two types of graphs for G.

Adjacency graph, where each node vi ∈ V is an entity, such as a pixel or super-

pixel in image labeling, a line in a line drawing interpretation, or an object in scene

understanding. Its variable xi ∈ {1, 2, 3, ..., Ki} is a label or color. MRFs and CRFs in

the literature belong to this category, and the task is to color the nodes V in K colors.

Candidacy graph, where each node vi ∈ V is a candidate or hypothesis, such

as a potential label assignment for an entity, an object instance detected by bottom-

up methods, or a potential match of a point to another point in graph matching. Its

variable xi ∈ {′on′,′ off ′} is a boolean which confirms (‘on’) or rejects (‘off’) the

candidate. In other words, the graph is labeled with K = 2 colors. In the graph

matching literature (Chui and Rangarajan, 2003), the candidacy graph is represented

by a assignment matrix.

An adjacency graph can always be transferred to a bigger candidacy graph by con-

verting each node vi into Ki nodes {xij}. xij ∈ {′on′,′ off ′} represents xi = j in the

adjacency graph. These nodes observe a mutual exclusion constraint to prevent fuzzy

assignments to xi.

Figure 6.3 shows this conversion. The adjacency graph Gadj =< Vadj, Eadj > has
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Figure 6.3: Converting an adjacency graph to a candidacy graph. The candidacy graph

has positive (straight blue lines) and negative (wiggled red lines) edges depending on

the values assigned to the nodes in the adjacency graph.

six nodes Vadj = {A,B,C,D,E, F} and each has 3 ∼ 5 potential labels. The vari-

ables are Xadj = (xA, ..., xF ) with xA ∈ {1, 2, 3, 4, 5} and so on. We convert it to a

candidacy graphGcan =< Vcan, Ecan >with 24 nodes Vcan = {A1, ..., A5, ..., F1, ..., F4}.

NodeA1 represents a candidate hypothesis that assigns xA = 1. TheXcan = (xA1 , ..., xF4)

are boolean variables.

Represented by the graph G, the vision task is posed as an optimization problem

that computes a most probable interpretation with a posterior probability p(X|I) or an

energy function E(X).

X∗ = arg max p(X|I) = arg min E(X). (6.2)

To preserve the ambiguity and uncertainty, we may compute multiple distinct solutions
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{Xi} with weights {ωi} to represent the posterior probability.

(Xi, ωi) ∼ p(X|I), i = 1, 2, ..., K. (6.3)

6.2.2 Positive and Negative Edges

In conventional vision formulation, edges in the graphs are a representational concept

and the energy terms in E are defined on the edges to express the interactions be-

tween nodes. In contrast, Swendsen-Wang (Swendsen and Wang, 1987) and Edward-

Sokal (Edwards and Sokal, 1988) added a new computational role to the edges in

their cluster sampling method. The edges are turned ‘on’ and ‘off’ probabilistically

to dynamically form groups (or clusters) of nodes which are strongly coupled. We

will introduce the clustering procedure shortly after the example below. We adopt this

notion and the edges in graph G are characterized in three aspects:

Positive vs negative. A positive edge represents a cooperative constraint for two

nodes having the same label in an adjacency graph or being turned on (or off) simulta-

neously in a candidacy graph. A negative edge requires the two nodes to have different

labels in an adjacency graph or requires one node to be turned on and the other turned

off in a candidacy graph.

Hard vs soft. Some edges represent hard constraints which must be satisfied, for

example, in line drawing interpretation or scene labeling, while other edge constraints

are soft and can be expressed with a probability.

Position dependent vs value dependent. Edges in adjacency graphs are generally

position dependent. For example, in an Ising model an edge between two adjacent

nodes poses a soft constraint that they should have the same label (ferromagnetism) or

opposite labels (antiferromagnetism). In contrast, edges in candidacy graphs are value

dependent and thus have more expressive power. This is common for vision tasks,
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such as scene labeling, line drawing interpretation, and graph matching. As Figure6.3

illustrates, the edges between nodes in the candidacy graph could be either positive or

negative depending on the values assigned to nodes A,B in the adjacency graph.

As we will show in a later subsection that the positive and negative edges are crucial

for generating connected components and resolving the problem of node coupling.

6.2.3 The Necker Cube Example

Figure 6.4 shows the construction of a candidacy graph G for interpreting the Necker

cube. For clarity of discussion we assume the exterior lines are labeled and the task is

to assign two labels (concave and convex) to the six inner lines such that all local and

global constraints are satisfied. Therefore we have a total of 12 candidate assignments

or nodes in G.

Based on the theory of line drawing interpretation (Sugihara, 1986; Mackworth,

1973), the two ’Y’-junctions pose positive constraints so that lines 1-2-3 have the same

label and lines 4-5-6 have the same label. We have 12 positive edges (green) in G to

express these constraints. The intersection of lines 2 and 4 poses negative constraints

that lines 2 and 4 have opposite labels which are shown in the red and wiggly edges in

Figure 6.4 . The same is true for lines 3 and 6. The two different assignments for each

line should also be linked by a negative edge. These negative edges are not shown for

clarity.

What does a solution to a graph G look like? We can see in Figure 6.4 what the

two Necker Cube solutions would look like. The first would have all nodes 1,2, and

3 labeled convex and all nodes 4,5, and 6 labeled concave. In this case, all edge con-

straints are satisfied and no underlying graph nodes have more than one value assigned

to them. This would create a valid 3D interpretation where the cube is “coming out”

of the page. The alternative solution has the opposite labeling, and creates a 3D in-
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1

Figure 6.4: The Necker cube example. The adjacency graph with 6 nodes (bottom) is

converted to a candidacy graph of 12 nodes (top) for concave and convex label assign-

ments respectively. 12 positive and 2 negative edges are placed to ensure consistency.
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terpretation of the cube “going in” to the page. No other assignments of labels would

succeed in satisfying all the constraints.

Let us now look at what it would take to switch from one solution to the other.

Each set of nodes, 1-2-3 and 4-5-6, constitutes a corner of the Necker Cube and all

have positive constraints between them. This indicates that we should update all of

these values simultaneously. We can create a connected component, or ccp, of these

nodes, which consists of all nodes currently satisfying their positive constraints. This

results in ccp1 and ccp2, comprised of nodes 1-2-3 and nodes 4-5-6 respectively.

If we were simply to invert the labels of ccp1, we would swap all labels from

concave to convex or vice versa. Thus the ccp has captured that all of its nodes should

change at once, and creates an effective swap of the corner label. However, simply

swapping ccp1 alone would create an inconsistent interpretation, as all edges in the

whole graph would now have the same label. What we need to do is simultaneously

swap ccp1 and ccp2, thus switching both corners at once.

Notice that we have negative edges between nodes 2 and 4 and between nodes 3 and

6. Negative edges can be thought of as indicators of multiple competing solutions, as

they necessarily dictate that groups on either end of the edge can either be (‘on’, ‘off’)

or (‘off’, ‘on’), creating two possible outcomes. This negative edge connects nodes

in ccp1 and ccp2, thus indicating that those nodes in the two ccps must have different

labels. Because we know that all nodes within ccp1 and ccp2 must have the same

label, this negative edge effectively means ccp1 and ccp2 must have opposite labels. If

we construct a composite connected component (called cccp), cccp12, encompassing

nodes 1-6, we now have a full component that contains all relevant constraints. Moving

from solution 1 to 2 is now as simple as flipping all the nodes simultaneously, or

equivalently satisfying all of the constraints.

In the next subsection, we explain how we form the ccp’s and cccp’s in a formal
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way.

6.2.4 Edge Probability for Clustering

On each positive or negative edge, we define an edge probability (using bottom-up dis-

criminative models) for the coupling strength. That is, at each edge e ∈ E, we define

an auxiliary probability ue ∈ {0, 1} or {′on′, ′off ′}, which follows an independent

probability qe.

In Swendsen and Wang (Swendsen and Wang, 1987), the definition of qe is de-

cided by the energy term in the Potts model qe = e−2β as a constant for all e. Barbu

and Zhu (Barbu and Zhu, 2005), for the first time, separate qe from the energy func-

tion and define it as a bottom-up probability: qe = p(l(xi) = l(xj)|F (xi), F (xj)) =

p(e = on|F (xi), F (xj)) with F (xi) and F (xj) being local features extracted at node

xi and xj . This can be learned through discriminative training, for example, by logistic

regression and boosting,

p(l(xi) = l(xj)|F (xi), F (xj))

p(l(xi) 6= l(xj)|F (xi), F (xj))
=

∑
n

λnhn(F (xi), F (xj)).

On a positive edge e = (i, j) ∈ E+, ue = ‘on′ follows a Bernoulli probability,

ue ∼ Bern(qe · 1(xi = xj)).

1() is boolean function. It equals 1 if the condition is satisfied and 0 otherwise. There-

fore, at the present state X , if the two nodes have the same color, i.e. xi = xj , then the

edge e is turned on with probability qe. If xi 6= xj , then ue ∼ Bern(0) and e is turned

off with probability 1. So, if two nodes are strongly coupled, qe should have a higher

value to ensure that they have a higher probability to stay the same color.

Similarly, for negative edges e ∈ E−, ue = ‘on′ also follows a Bernoulli probabil-

ity,

ue ∼ Bern(qe1(xi 6= xj)).
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At the present state X , if the two nodes have the same color xi = xj , then the edge e

is turned off with probability 1, otherwise e is turned on with probability qe to enforce

that xi and xj stay in different colors.

After sampling ue for all e ∈ E independently, we denote the sets of positive and

negative edges that remain ’on’ as E+
on ⊂ E+ and E−on ⊂ E− respectively. Then we

have a formal definitions of the ccp and cccp.

Definition 1 A ccp is a set of vertices {vi; i = 1, 2, ..., k} for which every vertex is

reachable from every other vertex by the positive edges in E+
on.

Definition 2 A cccp is a set of ccps {ccpi; i = 1, 2, ...,m} for which every ccp is

reachable from every other ccp by the negative edges in E−on.

No two ccp’s are reachable by positive edges, or else they would be a single ccp. Thus

a cccp is a set of isolated ccp’s that are connected by negative edges. An isolated ccp

is also treated as a cccp.

In Section 6.5, we will treat the invalid cases where a ccp contains negative edges

by converting it to a cccp.

To observe the detailed balance equations in MCMC design, we need to calculate

the probabilities for selecting a ccp or cccp which are determined by the edge proba-

bilities qe. For this purpose we define their cuts. In general, a cut is the set of all edges

connecting nodes between two nodes sets.

Definition 3 Under a current state X , a cut for a ccp is the set all positive edges

between nodes in ccp and its surrounding nodes which have the same label,

Cut(ccp|X) = {e : e ∈ E+, xi = xj, i ∈ ccp, j /∈ ccp}.
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Figure 6.5: A Necker cube candidacy graph not in a solution state.

These are the edges that must be turned off probabilistically (with probability 1 − qe)

in order to form the ccp and the cut depends on the state X .

Definition 4 A cut for a cccp at a state X is the set of all negative (or positive) edges

connecting the nodes in the cccp and its neighboring node which have different (or

same) labels,

Cut(cccp|X) = {e : e ∈ E−, i ∈ cccp, j /∈ cccp, xi 6= xj}

∪{e : e ∈ E+, i ∈ cccp, j /∈ cccp, xi = xj}.

All these edges must be turned off probabilistically with probability 1− qe in order to

form the composite connected component cccp at state X .

As edges in E+
on only connect nodes with the same label, so all nodes in a ccp have

the same label. In contrast, all edges in E−on only connect nodes with different labels,

adjacent ccp’s in a cccp must have different labels.

To illustrate the concepts, we show a non-solution state X for the Necker cube

in Figure 6.5. By turning off some edges (marked with the crosses), we obtain three
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cccp’s for the nodes that are currently ’on’. In this example, qe = 1, as these are hard

constraints that are inviolable. cccp1 and cccp3 have only 1 node, and cccp2 has two

ccp’s with 4 nodes. The algorithm will now arbitrarily select a cccp and update its

values according to its constraints. If it selects either cccp1 or cccp3, then we are one

step closer to the solution. If it selects (cccp2), then all the 4 vertex labels are swapped

and we have reached a solution state and will continue to swap back and forth between

the two solutions.

6.3 C4 algorithm on flat graphs

In this section, we introduce the C4 algorithm for cluster sampling on flat graphs.

6.3.1 Outline of the algorithm

The C4 algorithm works iteratively following the MCMC design. In each iteration, it

generates the cccp’s, selects (or visits) a cccpo with a probability, and reassigns labels

to its ccp’s such that all internal negative constraints are satisfied. As the number of

ccp’s in cccpo grows large, the number of potential labelings will grow as well. One

can remedy this situation in two ways:

1. Use a constraint-satisfaction problem (CSP)-solver to solve this smaller, easier

constraint satisfaction problem within cccpo.

2. Use random or heuristic sampling to find a new valid labeling.

We will use the second approach throughout this dissertation and the number of

ccp’s in a cccpo is in general small, so the label assignment is not a problem. The

C4 algorithm can be a viewed as a method that breaks a large constraint-satisfaction

problem into smaller fragments in cccpo which can be satisfied locally. Then it propa-
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gates the solution through iterations.

This assignment represents a move in MCMC which is accepted by the Metropolis-

Hastings step with an acceptance probability. The acceptance probability account for

the probabilities for generating the cccp’s, selecting a cccpo, assigning new labels, and

the posterior probability.

In summary, we state the C4 algorithm below.

——————————————————————-

C4 algorithm

Input: A graph G =< V,E > and posterior prob. p(X|I).

Calculate the edge probability qe,∀e ∈ E.

//qe is a problem specific discriminative probability.

Initialize the state X = (x1, x2, ..., xn).

// e.g. all nodes are turned off in a candidacy graph.

Repeat

Denote the current X by state A.

Step 1: generating a cccpo at state A

∀e = (i, j) ∈ E+, sampling ue ∼ Bern(qe1(xi = xj))

∀e = (i, j) ∈ E−, sampling ue ∼ Bern(qe1(xi 6= xj))

Generating the {ccp} and {cccp} based on E+
on and E−on

Selecting a cccpo from {cccp} probabilistically

// Denote the prob for selecting cccpo by q(cccpo|A).

Step 2: Assigning labels to ccp’s in the cccp with

probability: q(l(cccpo = L|cccpo, A).

Denote the new X as state B.

Step 3: Calculating the acceptance probability:

α(A→ B) = min(1, q(B→A)
q(A→B)

· p(X=B| I)
p(X=A| I) ).
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Output: distinct states {X∗} with highest probabilities.

——————————————————————-

We will elaborate on the probabilities used in the algorithm in the next subsection,

Intuitively, C4 is a general procedure for designing a cluster sampling algorithm,

just like SVM is a general design for classifiers. For specific problems, one needs to

select the probabilities for qe and q(l(cccpo) = L|cccpo, A). But unlike SVM which

needs good features to work, these probabilities are not very critical to its convergence.

6.3.2 Calculating the Acceptance Probability

In Markov chain design, each move between two states A and B is made reversible

and observes the detailed balance equation,

p(X = A|I)K(A→ B) = p(X = B|I)K(B → A). (6.4)

K(A → B) is the Markov chain kernel or transition probability from A to B. In the

Metropolis-Hastings design,

K(A→ B) = q(A→ B)α(A→ B), ∀A 6= B. (6.5)

q(A→ B) is the probability for proposing state B from state A, and α(A→ B) is the

acceptance probability,

α(A→ B) = min(1,
q(B → A)

q(A→ B)
· p(X = B| I)
p(X = A| I)

). (6.6)

It is easy to check that the design of proposal probability in eqn.(6.6) and the accep-

tance probability in eqn.(6.5) makes the kernel satisfy the detailed balance equation in

(6.4), which in turn suffices to observe the invariance condition,

p(X = A|I)K(A→ B) = p(X = B|I). (6.7)
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So, p(X|I) is the invariant probability of the Markov chain with kernel K. Now we

elaborate on the design of proposal and acceptance probabilities. The acceptance prob-

ability is determined by two ratios.

(i) The ratio p(X=B| I)
p(X=A|I) ) is problem specific and is not part of our design. The pos-

terior probability can be in general form and does not have to be modified or approxi-

mated to fit the C4 algorithm. As states A and B only differ in their labels for nodes

in cccpo, it often can be computed locally if the posterior probability is a MRF or CRF.

(ii) The proposal probability ratio is completely up to our design, and it includes

two parts,
q(B → A)

q(A→ B)
=
q(cccpo|B)

q(cccpo|A)
· q(l(cccpo) = LA|cccpo, B)

q(l(cccpo) = LB|cccpo, A)
.

q(cccp0|A) and q(cccp0|B) are the probabilities for choosing cccpo at states A and B

respectively. Given the chosen composite connected component cccpo, in both states

A and B, the assignment of new labels is independent of the surrounding neighbors of

cccpo and is often assigned by equal probability (uniform) among all valid assignments

in the CSP-solver. Thus they cancel out, and we have q(l(cccpo)=LA|cccpo,B)
q(l(cccpo)=LB |cccpo,A)

= 1.

To summarize, the key to the algorithm design is the ratio q(cccpo|B)
q(cccpo|A)

. In single

site sampling, such as Gibbs sampler, each node is a cccpo and the selection is simply

a visiting scheme. In C4 , the probability for choosing cccpo at a state depends on

two steps: (a) How likely it is to generate cccpo by sampling the edge probabilities qe

following the Bernoulli probability. (b) How likely it is to select cccpo from the set of

formed {cccp} in states A and B. These probabilities are hard to compute, because

there are a vast amount of partitions of the graph that include a certain cccpo by turning

on/off edges. A partition is a set of cccp’s after turning off some edges.

Interestingly, the set of all possible partitions in state A is identical to those in state

B, and all these partitions must share the same cut Cut(cccpo). That is, in order for

cccpo to be a composite connected component, its connections with its neighboring
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Figure 6.6: The Potts model with negative edges. (a) Minimum energy is a checker-

board pattern. (b) Forming cccps. (c) cccp0 consists of sub-ccps of positive edges

connected by negative edges.

nodes must be turned off. Even though the probabilities are in complex form, their

ratio is simple and clean due to cancellation. Furthermore, given the partition, cccpo is

selected with uniform probability from all possible cccp’s.

Proposition 1 The proposal probability ratio for selecting cccpo at states A and B is

q(cccp0|B)

q(cccp0|A)
=

∏
e∈Cut(cccpo|B)(1− qe)∏
e∈Cut(cccpo|A)(1− qe)

. (6.8)

We will prove this in the Appendix C in a similar way to the SW-cut method (Barbu

and Zhu, 2005)

6.3.3 Special case: Potts model with +/- edges

To illustrate C4 , we derive it in more detail for a Potts model with positive and neg-

ative edges. Let X be a random field defined on a 2D lattice with discrete states
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xi ∈ {0, 1, 2, ..., L− 1}. Its probability is specified by

p(X) =
1

Z
exp{−E(X)}; (6.9)

E(X) =
∑

<i,j>∈E+

βδ(xi = xj) +
∑

<i,j>∈E−
βδ(xi 6= xj),

where β > 0 is a constant. The edge probability will be qe = 1− e−β for all edges.

Figure 6.6.(a) shows an example on a small lattice with L = 2 labels, which is

an adjacency graph with position dependent edges. The states with checkerboard

patterns will have highest probabilities. Figure 6.6(b) and (c) show two reversible

states A and B by flipping the label of a cccpo in one step. In this example, cccpo

has three ccp’s, cccpo = {{2, 5, 6}; {3, 7, 8}; {11, 12}}. The labels of the 8 nodes are

re-assigned with uniform probability, and this leads to the difference in the cuts for

cccpo at the two states, Cut(cccpo|A) = {(3, 4), (4, 8), (12, 16)} and Cut(cccpo|B) =

{(1, 2), (1, 5), (5, 9), (6, 10), (10, 11), (11, 15)}.

Proposition 2 The acceptance probability for C4 on the Potts model is α(A→ B) =

1 for any two states with different labels in cccpo. Therefore, the move is always ac-

cepted.

The proof follows two observations. Firstly, the energy terms inside and outside cccpo

are the same for bothA andB, and they differ only at the cuts of cccpo. More precisely,

let c = |Cut(cccpo|B)| − |Cut(cccpo|A) be the difference of sizes in the two cuts (i.e.

c = 3 in our example), it is not too hard to show that

p(X = B| I)
p(X = A|I)

) = e−βc (6.10)

Secondly, we have the proposal probability ratio, following eqn.(6.8),

q(cccp0|B)

q(cccp0|A)
=

(1− qe)|Cut(cccpo|B)|

(1− qe)|Cut(cccpo|A)| = eβc. (6.11)
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(a) initial state (b) solution state 1 (c) solution state 2

Figure 6.7: The checkerboard Ising/Potts model solutions.

Plugging the two ratios in eqn.6.6, we have α(A → B) = 1. In the literature of SW

(Edwards and Sokal, 1988), Edwards and Sokal explain the SW on Potts model as data

augmentation where the edge variables {ue} are treated as auxiliary variables and they

sample {xi} and {ue} iteratively from a joint probability.

6.4 Experiments on Flat Graphs

In this section we test C4 ’s performance on some flat graphs (MRF and CRF) in

comparison with the Gibbs sampler (Geman and Geman, 1984), SW method (Swend-

sen and Wang, 1987), iterated conditional modes (ICM), graph cuts (Boykov et al.,

2001), and loopy belief propagation (LBP) (Kumar and Torr, 2006). We choose clas-

sical examples: (i) Ising/Potts model for MRF; (ii) Line drawing interpretation for

constrained-satisfaction problem using candidacy graph and (iii) scene labeling using

CRF. This section serves as an experimental study of C4 in general, while we will

apply C4 to our object recognition and aerial modeling problems in Chapter 7

6.4.1 Checkerboard Ising Model

We first show the Ising model on a 9 × 9 lattice with positive and negative edges

(the Ising model is a special case of the Potts model with L = 2 labels). We tested
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C4 with two parameters settings: (i) β = 1 and thus qe = 0.632; and (ii) β = 5 and

thus qe = 0.993. In this lattice we’ve created a checkerboard pattern. We’ve assigned

negative and positive edges so that blocks of nodes want to be the same color, but these

blocks want to be different colors than their neighbors.

Figure 6.7 shows a typical initial state to start the algorithm, and two perfect so-

lutions with minimum (i.e. 0 ) energy. To get a better idea of C4 ’s performance in

finding the two solutions, Figure 6.8(a) shows a plot of energy versus time for C4 ,

Gibbs sampler, SW, graph cuts, and LBP. C4 converges second fastest of all five al-

gorithms in a mere 10 iterations or so, behind graph cuts. Belief propagation cannot

converge due to the loopiness of the graph, and Gibbs sampler and the conventional

Swendsen-Wang cannot quickly satisfy the constraints as they do not update enough

of the space at each iteration. This shows that C4 has a very low burn-in time.

To get a better idea of where C4 really excels, we turn to Figure 6.8(b) and (c).

Figure 6.8(b) shows the state visited in at each iteration. We show the states in 3 levels:

the curve hits the ceiling or floor for the two minimum energy states respectively, and

the middle for all other states. Here we are only comparing graph cuts, SW and C4 as

they are the only algorithms that converge to a solution in a reasonable amount of

time. What is impressive to note is that C4 keeps swapping solutions while SW and

graph cuts get stuck in their first solution. This is because C4 can group along negative

edges as well as positive edges to update large portions of the system at once, while

Swendsen-Wang is stuck proposing low probability moves over smaller portions of the

solution space.

We also compared our results for experiments where β = 1 and β = 5. Figure

6.8(c) shows the states visited by the sampler over time. In the β = 1 case, it clearly

takes longer for C4 to converge, because it can’t form large components with high

probability. Also, once it does, it gets stuck in the first solution because the edge prob-
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Figure 6.8: (a) Energy plots of C4 , SW, Gibbs sampler, graph cuts, and LBP on the

Ising model vs. time. (b) (c) The state (visited by the algorithms) in time for graph

cuts, SW and C4 . Once SW and graph cuts hit the first solution, they get stuck while

C4 keeps swapping between the two minimum energy states. C4 results shown for

β = 1 and β = 5.

abilities are so low that they don’t form a large enough component to switch out. As β

gets large, however, C4 very quickly takes steps in the space towards the solution and

can move rapidly between solution states. We have found that an annealing schedule

where qe = 1− e−β/T and T is adjusted such that qe moves from 0 to 1 over the course

of the experiment works quite well too.

6.4.2 Checkerboard Potts Model with 7 Labels

We ran the same experiment as with the Ising model above but this time solved the

same checkerboard pattern on a Potts model in which each site could take one of seven

possible colors (L = 7). In this example, we have a large number of equal states (in

checkerboard pattern) with minimum energy.

Figure 6.9(a) plots the energy convergence of each algorithm over time. Graph
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Figure 6.9: (a) Energy plots of C4 , SW, Gibbs sampler, and LBP on the Potts model

(L = 7) vs. time. (b) (c) The minimum energy states visited by SW and C4 algorithms

over time. (d) Total number of unique solutions found vs. time for SW and C4 with

β = 1 and β = 5.

cuts again converges to just one of the many solutions. Unlike in the case of the L = 2

model, SW is able to find multiple solutions this time, as seen in Figure 6.9(b). This is

because SW can now update a block of the checkerboard with less constraints in label

assignments. Figure 6.9(c) shows the number of distinct states with minimum energy

that have been visited by SW and C4 over time. We see that C4 explores more states

in a given time limit which again demonstrates that C4 is more dynamic and thus has a

fast mixing time – a crucial measure for the efficiency of MCMC algorithms. We also

compare the case where β = 1 vs. β = 5. Once again, we see that β = 1 doesn’t create

strong enough connections for C4 to move out of local minimum, so it finds roughly

as many unique solutions as Swendsen-Wang does (about 13). When β is increased to

5, however, we see that the number of unique solutions C4 finds in the same amount

of time skyrockets from 13 to 90. We thus see that C4 can move around the solution

space much more rapidly than other methods when β is high and can discover a huge

number of unique solution states.
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6.4.3 Line Drawing Interpretation

The previous two examples are based on MRF models whose edges are position de-

pendent. Now we test on line drawing interpretation on candidacy graph. We use

two classical examples which have multiple stable interpretations, or solutions: (i) the

Necker cube in Figure 6.1 that has two interpretations; and (ii) a line drawing with

double cubes in Figure 6.10 that has four interpretations. The swapping between these

states involves the flipping of 3 or 12 lines simultaneously. Our goal is to test whether

the algorithms can compute the multiple distinct solutions over time.

We adopt a Potts like model on the candidacy graph. Each line in the line drawing

is a node in the Potts model, which can take one of eight line drawing labels indicating

whether the edge is concave, convex, or a depth boundary. See (Sugihara, 1986) for

an in-depth discussion on labels for consistent line drawings. We add an edge in our

candidacy graph between any two lines that share a junction. At each junction, there

are only a small set of valid labels for each line that are realizable in a 3D world. We

add positive edges between pairs of line labels that are consistent with one of these

junction types, and negative edges between line labels that are not. Thus, we model

the pairwise compatibility of neighboring line labels given the type of junction they

form.

As an example, in the Necker cube, the bottom right corner of the cube is an “ar-

row” junction. Based on consistent line labeling, the outer edges of the arrow junction

must both be convex, both be concave, or both be depth boundaries. Thus we add

positive edges between these possibilities, and negative edges between all other pos-

sibilities. By enforcing these pairwise constraints, the candidacy graph implicitly rep-

resents the higher-level junction constraints. A valid, zero energy solution to the line

drawing labeling will result in junctions that are all realizable in a 3D world, as defined

in (Sugihara, 1986). For these experiments we set β = 2, resulting in qe = 0.865.
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Figure 6.10: Experimental results for swapping state between interpretations: (a)

States visited by C4 for the Necker Cube. (b) A line drawing with outer and inner

cubes. (c) States visited by C4 for the double cubes.

Figures 6.10.(a) and (c) plot the state visited by the algorithms over time. Once

again we see that C4 can quickly switch between solutions where CSP solvers or other

MCMC methods could get stuck.

6.4.4 Labeling Man-made Structures on CRFs

In (Kumar and Hebert, 2003), CRFs were learned to model man-made structures in im-

ages. Images of outdoor scenes, like those in Figure 6.11, are broken into 16x24 grids

and each cell is assigned a label xi = {−1,+1} indicating if they covered man-made

structure or not. The probability of labeling the sites x given data y in a Conditional

random field (CRF) is

p(X|Y ) =
1

Z
exp

∑
i

φ(xi, y) +
∑
i

∑
j∈Ni

ψ(xi, xj, y) . (6.12)

In other words, p(X) is an MRF globally conditioned on the image Y . For space

we refer the reader to (Kumar and Hebert, 2003) for more details of this model. We

simply choose their model so that we can compare various algorithms on the same

representation. The authors use a greedy algorithm (ICM) for inference.

We learned the CRF weights via BFGS (Fletcher, 1970) using the data from (Ku-
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Figure 6.11: Man-made structure detection results.

mar and Hebert, 2003) and compared inference results using C4 to ICM, LBP, and

SW. Edge probabilities were taken from the CRF interaction potentials. The CRF de-

fines a potential for the case when two sites have the same label and for when they have

different labels. If the ratio of these two potentials was below a threshold τ , a nega-

tive edge was used to connect the sites to enforce them to be labeled differently. Such

negative edges indicate strong boundaries of the label map. Note that the positive and

negative edges are adopted for computational purpose here for generating their cccp’s

and they do not alter the energy function or probability model.

Figure 6.11 shows the detection results and ground truths. LBP has very few false

positives, but misses huge amounts of the detection. ICM looks graphically similar

to C4 , but produces significantly more false positives. C4 is able to swap between

foreground/background fragments in large steps so it can find blocks of man-made

structure more effectively.

Table 6.1 shows our results as in (Kumar and Hebert, 2003). The reported false

positive rate is much lower for ICM in (Kumar and Hebert, 2003). We were not able

to find a setting for the CRF weights that recreated those results. This is not to say
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Method FalsePositive (per image) DetectRate (%)

LBP 23.18 0.451

SW 156.05 0.468

ICM 61.78 0.697

C4 47.12 0.696

Table 6.1: False positives per image and detection rate using Loopy BP, SW, ICM, and

C4 for man-made structure detection.

that (Kumar and Hebert, 2003) can’t achieve those results, merely that, given the best

weightings we could find using BFGS, ICM performed less well than C4 did. This

was the case in every trial we performed, though we could not recreate the low false

positive rate in (Kumar and Hebert, 2003). For lack of a better form of comparison,

we report the false positive rate using our implementation along with our false positive

rate using C4 .

6.5 C4 on Hierarchical Graphs

In this section, we discuss the consistency of the flat graphs and extend C4 from flat

graphs to hierarchical graphs and then we address high-order constraints that involve

more than two sites.

6.5.1 Condition for Graph Consistency

In each iteration of the C4 algorithm, suppose we have turned on edges probabilis-

tically and the original graph G =< V,E > becomes Gon =< V,Eon > with

E = Eon ∪ Eoff , Eon = E+
on ∪ E−on, and Eoff = E+

off ∪ E
−
off . As we discussed

in Section 6.2.4 all nodes in the graph Gon in each ccp shares the same label and they
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Figure 6.12: An attempt to solve the duck/rabbit illusion using flat C4 . We see that

we are very likely to form love triangles on the left and right of the graph, making

constraint satisfaction very difficult.

are supposed to form a coupled partial solution. However, if the constraints in graph G

is inconsistent, then some nodes in a ccp may be connected by edges in E−off . Though

such negative edges are not turned on in ccp, They indicate that some nodes in the ccp

may be conflicting to each other. This may not be a serious problem, for example, the

negative edges may simply express soft constraints, such as overlapping windows due

to occlusion, which is acceptable in the final solution.

Figure 6.12 shows an example where the negative edge is a hard constraint. If

we try to solve the duck/rabbit illusion using flat candidacy graph, a ccp may contain

{′eye′,′ nose′,′ head′} which is inconsistent. We call it a ”love triangle”.

Definition 5 In a graph G, two nodes i, j connected by a negative edge is said to be

involved in a love triangle if there also exists a path between i, j that consists of all

positive edges.

Definition 6 A ccp is said to be consistent in graph G if there is no negative edges in
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Figure 6.13: Breaking the ’love triangle’ in a candidacy graph.

E that connect two nodes in the ccp, that is, {e : i, j ∈ ccp} ∩ E− = ∅. A graph G is

said to beconsistent if all its ccp’s are always consistent in C4 .

When a graph is consistent, then we are guaranteed to get valid solutions.

The existence of the so-called ’love triangles’ are the sole reason to generate in-

consistent ccp’s. For this we can easily prove the following proposition.

Proposition 3 In the absence of ’love triangles’, the graph G will be consistent.

The essential reason for generating the ’love triangles’ in a graph, mostly in candi-

dacy graphs, is that certain nodes are over-loaded with multiple labels and thus they are

coupled with conflicting nodes. For example, the node ’eye’ should be either a ’rabbit

eye’ or a ’duck eye’ and it should be split into two conflicting candidates connected by

an negative edge. This way it can eliminate the ”love triangle”. Figure 6.13 illustrates

that we can remove the love triangle by splitting node 1 into nodes 1 and 1′ and thus

we will have consistent ccp.

6.5.2 Formulation of Hierarchical C4

One other issue that we need to address is higher-order constraints that involve more

than 2 nodes. Such constraints are very common in grammatical, compositional, and

hierarchical models where visual entities are decomposed into multiple constituent
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Figure 6.14: An attempt to solve the duck/rabbit illusion using hierarchical C4 . The

trees define which parts comprise each object. Nodes are grouped according to these

trees, creating higher-level nodes. The higher-level nodes inherit the negative con-

straints.

parts. Figure 6.14 shows a hierarchical graph representation for the duck/rabbit illu-

sion. This is a candidacy graph with two layers. The top layer contains two hidden

candidate hypotheses: ’duck’ and ’rabbit’. The two nodes are decomposed into three

parts in layer 1 respectively and thus impose high order constraints between them. Now

the hypotheses for parts are specifically for ’duck.eye’, ’rabbit.eye’ etc. The negative

edge connecting the two object nodes is inherited from their overlapping children.

This hierarchical candidacy graph is constructed on-the-fly with nodes being gen-

erated by multiple bottom-up detection and binding processes as well as top-down

prediction processes. We refer to a recent paper by Wu and Zhu (Wu and Zhu, 2010)

for the various bottom-up/top-down processes in object parsing. In this graph, positive

and negative edges are added between nodes on the same layers in a way identical

to the flat candidacy graph, while the vertical links between parent-child nodes are
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deterministic.

By turning on/off the positive and negative edges probabilistically at each layer,

C4 obtains ccp’s and cccp’s as in the flat candidacy graphs. In this case, a ccp con-

tains a set of nodes that are coupled in both horizontal and vertical directions and thus

represents a partial parse tree. A cccp contains multiple competing parse trees, which

will be swapped in a single step. For example, the left panel in Figure 6.14 shows two

ccp’s for the duck and rabbit respectively which are connected with negative edges in

the candidacy graph.

This hierarchical representation can also eliminate the inconsistency caused by

overloaded labels. That is, if a certain part is shared by multiple object or object

instances, we need to create multiple instances as nodes in the hierarchical candidacy

graph.

6.5.3 Experiments on Hierarchical C4

To demonstrate the advantages of hierarchical C4 over flat C4 , we present experi-

ments on interpreting the duck/rabbit illusion and finding configurations of object parts

amidst extremely high noise.

Hierarchical Duck/Rabbit Illusion To demonstrate the advantages of hierarchi-

cal C4 over flat C4 , we present an experiment for interpreting the duck/rabbit illusion.

We will use C4 for finding configurations of object parts amidst extremely high noise

using our models in Chapter 7.

Experiment on Hierarchical Duck/Rabbit Illusion. As referenced above, C4 on

the flat candidacy graph in Figure 6.12 creates two love triangles. As such, when the

algorithm converges, it selects the entire graph as a proposal structure, which it cannot

determine a suitable labeling for. This conundrum is familiar to other graph inference
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problems, as we found that graph cuts could not find a labeling for this graph as well.

The top panel of Figure 6.15 shows the results of flat C4 on the duck/rabbit illusion.

C4 continuously swaps between two states, but the two states either have all nodes on

or all nodes off, neither of which are valid solutions. The bottom panel of Figure 6.15

shows the results of applying hierarchical C4 to the duck/rabbit illusion. We defined

a tree for the duck/rabbit illusion consisting of either a duck, {beak, eye, duck.head},

or a rabbit {ears, eye, rabbit.head}. As a result, the algorithm instantly finds both

solutions and then proceeds to swap between them uniformly. These results show that

hierarchical C4 can help guide the algorithm to more robust solutions and negates the

effects of love triangles.

6.6 Conclusions on C4

In this chapter we presented C4 , an algorithm that can handle complex energy min-

imization tasks with soft and hard constraints. By breaking a large CSP into smaller

sub-CSPs probabilistically, C4 can quickly find multiple solutions and switch between

them quickly. This combination of cluster sampling and constraint-satisfaction tech-

niques allows C4 to achieve a fast mixing time, out-performing single-site samplers

and techniques like belief propagation on existing problems. This novel algorithm can

sample from arbitrary posteriors, and is thus applicable to general graphical models,

including MRFs and CRFs. In addition, we were able to use a hierarchical prior to

guide our search to avoid frustrations in the graph and thus achieve richer and more

accurate results than just by using Flat C4 alone. In the next chapter we will see ap-

plications of C4 to our object and aerial image models.
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Figure 6.15: (Top panel) Flat C4 results on the duck/rabbit illusion. C4 swaps

between two impossible states due to love triangles. (Bottom panel) Hierarchical

C4 results on the duck/rabbit solution. C4 now swaps uniformly between the two

correct solutions.
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CHAPTER 7

Experiments on Inference

Given that we’ve learned our hierarchical contextual models for objects and aerial

images as in Chapter 4, we now describe bottom-up detection methods combined with

C4 for parsing images using our inference methods.

7.1 Object Inference

A problem that often appears in computer science is the problem of finding the optimal

subset from a larger set of items that minimizes some energy function. In computer

vision, this problem often presents itself as finding the best subset of detections that

correspond to true detections. For example, in the constellation model, a parts-based

object model, many instances of each object part may be detected in the image (e.g. a

car detector may find 5 wheels, 3 bodies, and 4 windshields). However, our algorithm

should find the subset (or subsets) of these detections that creates the highest probabil-

ity configuration (e.g. the 4 wheels, 1 body, and 1 windshield that look most like a car).

This is a combinatorially hard problem as the number of solutions grows exponentially

in the number of detections, so heuristic approaches are usually proposed to deal with

this situation.

Hierarchical C4 is ideally suited for this problem, as it can use local edge con-

straints and hierarchical grouping to guide its search through large sets of detections

to find the most likely solutions. In this experiment, we learned our model for 4 cate-
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gories of objects: ’side car’, ’front car’, ’teapot’, and ’clock’. We then present C4 with

a set of detections as noisy distractors, within which a true object was included. For

each true detection we added 50 false detections at random orientations, scales, and po-

sitions, as shown in Figure 7.2. If we only considered configurations of 4 parts, finding

the optimal configuration would require exhaustively searching 64,684,950 configura-

tions, in the worst case, which quickly becomes intractable when considering larger

configurations or more detections. Because our object parts for the object model are

graph structures that are difficult to detect, we generate the false distractors and true

positives in this case. Later work will examine terminals that can be generated using

detection algorithms.

To create our candidacy graph we let each bottom-up detection be a vertex in the

graph, connected by edges with probabilities proportional to how compatible those

objects are. Each candidate can be on or off, indicating whether it is in the current

explanation of the scene or not.

Each edge is assigned to be positive or negative and assigned a probability qe of

being on by examining the energy e =
∑N(R)

i=1 < λ
(β)
i , Hi(xs, xt) > between its two

nodes (xs, xt). If e > T , the edge is labeled as a negative edge and if e < T the

edge is labeled as a positive edge, where T is a threshold of the user’s choosing. In

our experiments we let T = 0. Next, we apply a squashing function to the pairwise

energy to normalize the energies to the range [0, 1]. In our experiments we used a

logistic function F (e) = 1
1+exp{−(e−T )/s} , where T is our threshold from above and s

is a scale parameter that determines how soft or hard the edges are. We then apply

F ′(e) = 1− F (e), e < 0 to make our probability function symmetric for both positive

and negative edges, then rescale to [0, 1] via F ′′(x) = 2 ∗ F (x) − 1. This creates a

symmetric function where a value much less than t is a positive edge with probability

close to 1, and a value just slightly larger than T is a negative edge with probability
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Figure 7.1: The edge strengths for positive and negative edges. The energy between

two nodes F (e) is computed based on the learned model and then reparameterized

using F ′(e) and F ′′(e) to create a function that maps an edge type and probability for

each pairwise energy. Parameters are T = 0, s = 4

close to 0. The value s determines how quickly the edge probability saturates to 1 as e

moves away from T . Figure 7.1 visualizes this function with T = 0 and s = 4. Using

the squashing function we create data-driven edge probabilities and determine positive

and negative edge types for C4 .

To test both C4 and our learned models we compare to Iterated Conditional Modes,

Swendsen-Wang, C4 , and Hierarchical C4 . In each scenario the detections can either

be “on” or “off”. Each inference algorithm then attempts to use the unary probabilities

and the pairwise positive/negative edges to determine the best subset of detections, if

any, for each image. We could not compare to graph cuts because it could not return

an answer on these types of graphs.

The results of finding the optimal subset using ICM, Swendsen-Wang, flat C4 ,

and hierarchical C4 for the teapot category are shown in Figure 7.2. We can see that
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flat C4

noisy part detectionsinput image ICM

SW hierarchical C4

Figure 7.2: Hierarchical C4 for detecting signal from noise. A huge set of distractors

are added over a true parse of an object. Using our learned model, C4 can find the best

subset while other algorithms cannot.

ICM and Swendsen-Wang find completely unreasonable solutions. This is due to the

fact that they quickly get stuck in sub-optimal solutions. Flat C4 does not find the

correct solution, although it does find a set of parts that are fairly low energy, as the

resulting image does look similar to a teapot. Hierarchical C4 , on the other hand,

quickly converges to the true solution amidst the myriad other possible part combina-

tions available.

Figure 7.3 shows the results of other signal-from-noise images that were generated

as above. We show the results divided roughly into three categories: good, medium,

and bad results. A good result selects all of the correct parts for each image, a medium

result selects 1-2 parts wrong, while the rest are considered bad. The righthand graphs

show the proportion of the testing images that were good, medium, or bad according

to algorithm. We see that hierarchical C4 gets mostly good results, while ICM gets
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entirely bad results. Flat C4 achieves a fair proportion of good results, but not nearly

as many as Hierarchical C4 does.

Figure 7.4 shows the energy of the system over time for the four algorithms we

tested. We can see that, not only does hierarchical C4 achieve a minimum energy

almost instantaneously, but that both hierarchical C4 and flat C4 are able to achieve

lower energy minimums than the other methods. This improvement applies to graph

cuts as well, which, as mentioned, are not shown here because no implementation we

found was able to converge in the presence of love triangles. This result shows Hierar-

chical C4 ’s ability to quickly find deeper energy minima than competing approaches.

In our experiments we found that, in certain cases, the energy function being mini-

mized could be tweaked such that flat C4 would actually find the correct solution more

frequently. However, aside from the inconvenience of adjusting energy functions, we

found that (i) flat C4 could not always find the correct solution, and (ii) flat C4 was

much slower than hierarchical C4 , requiring 15 seconds to parse an image that Hier-

archical C4 could parse in under 1 second.

These results show the power of Hierarchical C4 for quickly finding minimal en-

ergy subsets and swapping between equally or nearly-equally likely solutions once

found, where as similar methods (Swendsen-Wang, ICM, Graph Cuts) fail to even find

a viable solution. It also shows that our learned model enforces correct part arrange-

ments, as Hierarchical C4 finds the true object boundaries according to the model

energy quite easily.

7.2 Aerial Image Inference

In this section we show the results of using C4 and our learned aerial image model for

aerial image parsing. Unlike the object detection results that required hand-generated
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Figure 7.3: Examples of good/medium/bad results for Hierarchical C4 , Flat C4 ,

Swendsen-Wang cuts, and iterative conditional modes (ICM). The graphs to the right

show the proportion of the testing images that belonged to each ranking according to

algorithm.

detections, we have a number of methods for detecting each type of object in an aerial

image. We then use C4 to find the best subset of detections that describe the aerial

image in accordance with our bottom-up probabilities and our top-down model. We

first describe our bottom-up detection methods and then present results of applying

C4 for inferring the best parse of the scene.

7.2.1 Bottom-Up Detections

We first use bottom-up detectors to find initial detections for each type of object in

each new aerial image:

Cars: We trained a discriminative AdaBoost classifier (Freund and Schapire,

1997) to detect cars. We collected 3000 positive examples of cars, selected by hand

as patches containing a single car from aerial images, as well as 3000 negative images

for training, comprised of patches of training images in which no car is present. Figure

7.5(a) shows car detections using the learned classifier. Unfortunately, we do find that

this method results in many false positives, which we will address later. AdaBoost
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Figure 7.4: Plots of energy over time for Hierarchical C4 , Flat C4 , Swendsen-Wang

cuts, and iterative conditional modes (ICM). Not only does Hierarchical C4 converge

fastest of all the algorithms, but it achieves a lower energy than the other methods.

is a commonly cited and described algorithm, so we refer the reader to (Freund and

Schapire, 1997) for further details.

Parking lots and Trees: Parking lots and trees are characterized by their textures.

Color information is highly variable from one parking lot or grove of trees to the next,

so color histograms are too simple to capture an appearance model for these classes.

We resolve this problem by using TextonBoost (Shotton et al., 2006), an algorithm

for combining texture and shape cues in a boosting framework to create a discrimina-

tive classifier. TextonBoost extracts textons (collections of filter responses) for each

category and clusters them into a texton dictionary. These textons are then boosted

using to arrive at a combined discriminative classifier. We provided TextonBoost with

about 100 images in which the images are labeled (0/1) according to whether or not a

pixel belongs to background or the category we’re learning (parking lots and trees are
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Figure 7.5: Single object detections using our bottom-up detectors.

learned separately). The pure bottom-up results are shown in Figure 7.5(b) and Figure

7.5(c).

Roofs and Roads: Roofs and roads present quite a different problem from the

categories we’ve represented up until now. They are neither defined by a constant

shape nor a constant texture. The most informative cues are the edges that define their

boundaries. We use a recently developed algorithm called Compositional Boosting

(Wu et al., 2007) that hierarchically combines low-level cues into higher-level struc-

tures. A more detailed explanation of Compositional Boosting is given in (Wu et al.,

2007), but we will describe it at a high level here. Results for road and roof parsing

are shown in Figure 7.5(d) and (e).
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7.2.1.1 High-level Description of Compositional Boosting

Compositional Boosting learns a model by first defining a dictionary of low-level fea-

tures (such as edges) along with some spatial rules of interest (e.g. parallelism, relative

length, collinearity). These low-level features are first labeled in a number of training

images and labeled as belonging to the structure of interest or not. For example, in

this experiment, we labeled edges in the training data as belonging to a roof, a road, or

neither. Compositional Boosting begins building a hierarchy from these labeled edges

by testing the mutual information of edges under certain spatial constraints. For exam-

ple, in the roof class we will see lines at right angles more frequently than in random

noise. Any composition rules with mutual information greater than some threshold are

added to the hierarchy (e.g. two lines nearly 90 degrees from one another should form

a higher-level component). This process then repeats at the next highest level until

some percentage of the labeled lines are modeled by the final composition. Figure

3.6 shows the Compositional Boosting hierarchies below the roof and road nodes. A

roof can decompose into a number of different shapes, each of which is formed from

lower-level components.

To detect structures in images, we first define detectors for Compositional Boost-

ing. We begin with an edge detector for edges, since they are the lowest level nodes in

our hierarchy. However, we may also define higher level detectors to find higher-level

nodes (e.g. corner detectors). Let us define a possible set of detectors T = {ti : i =

1, 2, . . . , k} at each node designed to detect that part directly from the image. We also

add auxiliary data structures to each node, called “Open” and “Closed” lists. The open

lists will store any current potential detections for that node. The closed list will store

any accepted detections of the node the list resides at. Each proposal in an open list is

weighted by a posterior probability ratio.

Compositional Boosting first creates proposals for the open lists for an image I in
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open list (weighted particles for hypotheses)

closed list (accepted instances)

Figure 7.6: A conceptualization of inference with Compositional Boosting. The left

hand side shows an example of a node in a Compositional Boosting tree with parent

node A and children nodes (A1, A2, A3). (t1, . . . , tn) indicate proposals for A detected

directly from the image, while A = A1 · A2 · A3 indicates proposals for A detected

as a product of child proposals. In the inference process, we store proposals at node

A in open and closed lists, where particles in the open list are pending proposals and

particles in the closed list have been accepted. The red and blue arrows in the fig-

ure indicate that there is evidence for each particle coming from both bottom-up and

top-down channels.

one of two ways:

(1) Proposals for A are formed from local detectors T . The weight of each detec-

tion is the log-ratio of the local marginal posterior probability on an image patch λi

using some features of the image F (),

ω̂iA ≈ log
p(Ai|F (Iλi))

p(Āi|F (Iλi))
, (7.1)

where Ā is an alternative hypothesis.

(2) Proposals for A are formed by combining proposals for A’s children from their

Open and Closed lists. Proposals from each list are compared based on their compati-

bility, and highly compatible proposals are combined to propose the higher level node
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Figure 7.7: An example of detecting roofs with Compositional Boosting. We run a

probabilistic edge detector to get image (b), after which the algorithm detects object

parts, such as parallel lines and corners in (c) and (d). These act as evidence for the

final roof proposals in (e).

A. The weight on these hypotheses is the local conditional posterior probability ratio.

Suppose a proposal Ai is formed from three of its child proposals Ai1, Ai2, and Ai3, then

the weight will be

ω̂iA ≈ log
p(Ai1, A

i
2, A

i
3|Ai)p(Ai)

p(Ai1, A
i
2, A

i
3|Āi)p(Āi)

(7.2)

where Ā represents a competing hypothesis. In other words, we are measuring the

probability that these proposals appeared as a result of A existing as opposed to some

other node. The top-down process then greedily adds proposals from the Open lists to

the Closed lists and updates the Open list weights until no weights are above a certain

threshold.

Figure 7.6 shows a toy example of this process. Here we see that A can be formed

from either its detections T , or by combining proposals from its children. This is

where Compositional Boosting is particularly powerful, because weak detections of

compatible children may be enough for us to propose the parent node.

Figure 7.7 shows an example of roof detection using Compositional Boosting. We

begin with a probabilistic edge map formed from our source image. From this map
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we first extract edge segments using an edge detector. We next combine edges that

are compatible according to the rules that we’ve learned from labeled roofs. Figure

7.7(c) shows parallel lines detected in the image, while Figure 7.7(d) shows corners

detected in the image. Figure 7.7(e) shows the final roof detections inferred from the

composition of these low-level features. We can see that the rectangular structures of

roofs are detected, but there are also many false positives present.

7.2.2 Top-Down Prediction of Missing Objects

Because we have a generative model for scenes, we can use the results from the first

round of initial bottom-up detections to suggest where other objects may have been

missed. For example, if we detected four cars in a row with a gap in between them,

it might be reasonable to predict that another car should be present there. Figure 7.8

shows an example of predicted roofs, cars, and roads based on our results from stage

two and our prior model. The hallucinated objects are shown in green dashed rectan-

gles, while the accepted detections from C4 are shown in black solid rectangles. These

top-down predictions will then be pruned or accepted using a final round of C4 .

Our top-down prediction method consists of sampling new parse graphs based on

our original parsing results. We perform C4 to determine which objects are most

likely good detections and form a parse graph for the scene. We then sample new node

frequencies and part relationships for the parse graph, accepting them probabilistically

using a Metropolis-Hastings step. For example, our parse graph may describe a row

of three cars with a large gap in between them. Our model may find a lower energy

arrangement describing the scene by five cars where the extra two cars fill in the gap.

Once this new parse graph is proposed, we verify the top-down detections by giving

them a uniform detection probability and then running another round of C4 .
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Buildings Cars Roads

Figure 7.8: Top-down hallucinations of missing objects. Black rectangles indicate

the detections from our first run of C4 , while the green dashed rectangles indicate

hypotheses for missing objects proposed by the top-down part of our model.

7.2.3 Experimental Results

We ran our algorithm on 5 large (4000x4000) images collected from Google Earth. We

learned a top-down model as in Chapter 4 and implemented detectors for each of the

objects as described in Section 7.2.1. Figure 7.9 shows the process of our algorithm

on one aerial image. The first panel shows the original image, while the second panel

shows an overlay of the initial bottom-up detections, which contains a huge number

of false positives (3 false positive roads, 71 false positive buildings, 623 false positive

cars, 10 false positive trees). The third panel shows the results of using C4 clustering

to find a high probability set of bottom-up detections to explain the scene. The fourth

panel shows the final explanation of the image after some new proposals have been

suggested and verified. The first step of the C4 algorithm shows the most dramatic

improvement, with vast numbers of inconsistent detections (cars on roofs, trees on

roads, overlapping roofs) being removed, leaving just single object boundaries for the

important objects (we now have 0 false positive roads, 5 false positive buildings, 57

false positive cars and 0 false positive trees). The second step gives a slight improve-
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(a) (b)

(c) (d)

TreesRoadsCarsRoofsParking Lots

Figure 7.9: The bottom-up to top-down pipeline. (a) The original image. (b) The

bottom-up detections. There are a huge number of overlapping and inconsistent detec-

tions. (c) The top-down pruning results using C4 . Many false positives are removed.

(d) The results given newly proposed nodes from the hierarchical prior.
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ment, though primarily just in finding missing cars, which are difficult to see at this

resolution. Note that there are still some missed detections, either because our initial

detectors did not detect the object or because the context may have inadvertently ruled

out a valid explanation (e.g. accidentally favoring the shadow of a roof instead of the

roof itself, thus suppressing the true roof).

The inference stage, given bottom-up proposals, takes about 10 seconds to run on

a dual core 1.6GHz machine. The bottleneck in our pipeline is the detection phase,

however. For example, our AdaBoost results take a mere couple of seconds to com-

pute. The edge detector we used, on the other hand, can take upwards of a minute to

process each image. Therefore, the speed of our approach is highly dependent upon

the speed required to compute the initial bottom-up detections.

7.2.3.1 Compositional Boosting Results

Because of the newness of Compositional Boosting, we first examined how much im-

provement we achieved in detecting low-level roof parts using Compositional Boost-

ing. Figure 7.10 shows ROC curves for detecting U junctions, L junctions, parallel

lines, and opposing L junctions. Using specific bottom-up detectors alone (the blue

curves) causes us to miss a lot of the junctions present. By using Compositional Boost-

ing, we are again able to leverage context and hierarchy to identify missing junctions

to help us propose more roofs, as shown by the red curves.

7.2.3.2 Top-Down Pruning

Figure 7.11 shows a zoomed in view of our test images before and after pruning. Figure

7.11 shows that, at first, we have many conflicting proposals for the object boundaries,

notably that a parking lot could be on top of the roof. After we enforce the contextual

constraints we learned, however, we return to a sensible explanation of the scene, one
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Figure 7.10: ROC curves for detecting U junctions, L junctions, parallel lines, and

opposing L junctions using Compositional Boosting. We see that CompBoost helps

us identify weakly detected junctions, which helps us propose better high-level detec-

tions.

(a) (b)

Figure 7.11: Close up views of our improvement during pruning. Notice that overlap-

ping proposals and inconsistent explanations (cars in trees) have been removed.

in which there are no longer cars on top of roofs or overlapping proposals. Figure

7.12 shows a zoomed in view after we propose new cars. Initially we missed some

cars in the rows of the parking lots. Because our model recognizes that cars appear in

rows, however, it proposes cars of roughly the same shape and sizes of the neighboring

cars around them, using a line grammar. Cars matching above a certain likelihood are

accepted and the conflicting nodes are removed.

Table 7.1 shows the detection rate and false positives per image of each category

using just that category’s detector (shown in parentheses) vs. using the full hierarchical
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Figure 7.12: Close up views of our improvement during top-down prediction. Addi-

tional cars are added to the rows due to the presence of other collinear cars.

contextual model. We can see that the hierarchical contextual model greatly reduces

the false positive rate from single-object bottom-up detectors because it can leverage

context to remove false positives. Our detection rate is about the same, however, as the

pruning phase in the second stage serves mostly to rule out inconsistent detections. In

the third stage we were able to identify a few extra cars (as shown in Figure 7.12), but

the amount of extra detections was not enough to account for the inadvertent pruning

of true positives from stage 2. Overall, our context allows us to achieve comparable

detection rates to single-object detectors, but with far fewer false positives.

Figure 7.13 shows two different precision-recall curves for the bottom-up and top-

down stages of our process. We show precision-recall as opposed to ROC curves

because it is difficult to decide how to compute the number of true negatives for multi-

category classification tasks, a decision that can drastically alter the appearance of

the algorithm’s performance. In Figure 7.13(a), we measure our accuracy at the pixel

level. In this experiment, we labeled each pixel in the image as belonging to an object

category or not and then converted our inferred boundaries to a similar labeling. In

Figure 7.13(b) we measure our performance using object-level accuracy. In this case

we considered an object to be detected if it had a boundary around it within some

threshold of its true scale and position. In both cases we can see that the top-down
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Table 7.1: False positives per image and detection rates for bottom-up detectors versus

our method.

Detection method False positives per image Detection rate

Cars (AdaBoost) 242.33 88.1%

Cars (Ours) 71.83 84.2%

Parking Lots (TextonBoost) 1.17 84.3%

Parking Lots (Ours) 0.16 84.3%

Trees (TextonBoost) 14.5 88.8%

Trees (Ours) 9.33 88.8%

Roofs (CompBoost) 73.5 70.3%

Roofs (Ours) 1.67 70.3%

Roads (CompBoost) 5.67 95%

Roads (Ours) 0.05 88.3%

Combined (All Detectors) 337.17 93.1%

Combined (Ours) 83.04 87.5%
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Figure 7.13: Precision-Recall curves for the bottom-up and top-down inference algo-

rithm. In both cases we see a huge improvement by using C4 to prune out false posi-

tives and using our model to predict missing objects. F1 and F2 are the best F-measures

for the bottom-up and for the full algorithm, respectively. (a) Precision-Recall curve

using pixel-level accuracy, i.e. each pixel in the image is assigned a category label.

(b) Precision-Recall curve using object-level accuracy, i.e. each object is considered

detected if we infer an object of appropriate dimensions over it.

improvements over the initial detections are substantial. While the initial detections

give average performance, it is the introduction of the top-down pruning and predic-

tion that flattens our curve, enabling us to keep a very high level of precision as the

recall increases. Notice, however, that in Figure 7.13(b) the second stage actually de-

grades performance slightly for low values of recall, likely because it has pruned too

many true positives, reducing our precision slightly. This could likely be improved

by adjusting the likelihoods of our initial candidates so that we don’t overprune them.

Overall though the top-down performance far eclipses the initial bottom-up detection

results on their own.

We also looked at the many benefits of using C4 to find solutions. Figure 7.14

shows an example of a patch where C4 is extremely useful during inference. In the

first panel, the algorithm has mistakenly interpreted the vents on top of the building as
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(b)(a)

Figure 7.14: An example of swapping alternative solutions using C4 . (a) Vents are

incorrectly labeled as cars on top of the roof. (b) The cars are correctly swapped out

for the roof simultaneously to arrive at the correct solution.

cars. This has thus ruled out the true explanation that there is a building there. Thanks

to C4 ’s ability to swap out all of the related cars while simultaneously adding the roof,

we are able to arrive at the correct solution in panel (b). This solution is maintained

because it has a higher probability than the previous explanation.

7.2.3.3 Model Complexity Results

In Section 4.3 we mentioned that we choose to add relationships iteratively instead

of fitting the full model, as this allows us to keep our model simple for sampling and

performing inference. The question remains, however, about whether we need to learn

as many relationships as we do. Figure 7.15 shows the inference results for an aerial

image using a model with a high ε1 (10) and a model with a standard ε1 (4). We can

see that the partially learned model is lacking contextual relationships for cars and

buildings, as many cars appear on roofs, and cars appear on top of one another. The

fully learned model does not make these mistakes. While ε1 is definitely variable, we

strive to select a value that produces good results while still minimizing the size of our
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Fully Learned ModelPartially Learned Model

Figure 7.15: A comparison of inference results for the model learned with a very high

ε1 versus a rather low ε1 (i.e. fewer relationships are added to the first model). The

partially learned model is missing a lot of overlap constraints (e.g. cars on trees, cars

on buildings), and so makes very poor decisions when parsing the scene. Many of the

buildings have cars on top of them and cars readily overlap each other.

relation set R.

Figures 7.16 and 7.17 show the final results of our algorithm on a number of other

urban aerial images. We used our algorithm to find the best parse graph representa-

tions for each object and here just display the flattened configurations of the highest

probability parse graph for each scene. We can see that the majority of objects are

detected accurately, though there are still a few false positives.

We would like to compare our methods to other works in the field, but, as men-

tioned in Section 6.1, we are hard-pressed to find competing algorithms that iden-
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tify multiple categories of objects. Similarly it was quite difficult to find bench-

marks on consistent datasets in the aerial imaging community, so we would like to

offer these results as a benchmark on the aerial images we used from the Lotus Hill

Database. These images will be available from the Lotus Hill Institute’s website

(http://www.imageparsing.com) and can be used freely by anyone else interested in

testing on them.

7.3 Conclusions on Inference Experiments

In this chapter we showed the power of our model and inference algorithm for pars-

ing new images. We saw that Hierarchical C4 was able to find the correct subset of

object parts very quickly even in very noisy situations. We also showed that bottom-

up and top-down methods could be combined to more accurately parse aerial images

than using one source of information alone. We saw that C4 ruled out many of the

inconsistent detections and was able to swap between different interpretations. We

were also able to show a very slight improvement in our detection rate by using the

model to predict objects that were originally missed by the bottom-up detection phase.

Overall we are very pleased with these results and feel that these experiments show

both our model’s and our inference algorithm’s power for representing and detecting

highly variant image classes.

130



Figure 7.16: Flat configurations of parsed images.
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Figure 7.17: Flat configurations of parsed images.
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CHAPTER 8

Discussion and Future Work

The main idea introduced in this dissertation is a new generative contextual hierarchy

for pattern recognition and modeling. We argue that this combination of hierarchy

and context is a critical step forward in modeling highly variant patterns because it

combines descriptive models (MRFs for context) with generative models (SCFGs for

hierarchy), allowing the model to recognize and recreate a huge range of instances in a

very compact framework. To the best of our knowledge, ours is the first model to add

horizontal constraints to an SCFG where the constraints can be arbitrarily complex.

We also feel that the minimax entropy learning framework, first used for texture

modeling in (Zhu et al., 1997) but applied for the first time here to hierarchical models,

is a crucial tool for allowing the system to automatically select relevant relationships

for modeling the patterns in question and learning their parameters with a minimum

of human intervention. The algorithm that we have laid out can determine what subset

of relationships is most important for modeling a given pattern and can then estimate

their parameters through iterative sampling of the current model state and comparing

it to the real world observed statistics. We showed that iterative pursuit of the relation-

ships provably monotonically decreases the KL divergence between our current model

and the target distribution and that estimation of the relationship parameters using our

method produces realistic patterns sampled from our model.

Lastly, we feel the C4 algorithm is a powerful tool for inference in any graph-

based model for which interactions can be defined between parts. Current graph cut
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and sampling methods are either too slow or unable to cope with multiple solutions

and thus cannot solve the type of optimal subset selection problems we are handling.

C4 was shown to very quickly reach a deeper energy minimum and maintain multiple

solutions better than any existing algorithms. Moreover, the hierarchical formulation

of C4 can incorporate more complicated priors and can compute more quickly than

the flat C4 representation.

There are many ways in which we will be expanding and augmenting the current

model in future work. To begin with, it should be noted that the primitives in the

model, which in our experiments were object parts or aerial objects, could be of any

form and could have an arbitrary set of attributes. We are therefore interested in ex-

tending our work to more general natural images, as well as other domains, such as

audio, text, and video. Additionally, we are exploring ways to automatically learn the

grammar structure given the observed statistics. It is too laborious to have an operator

hand-define a grammar for each pattern class so we therefore need a way to help au-

tomate this process. We are exploring existing grammar-building algorithms as well

as experimenting with our own methods for constructing these hierarchies. Lastly, we

are interested in extending this work to a fully unsupervised framework. Even with

the hierarchies automatically generated and the experiments showing that very few

training samples are needed to capture the critical parts of an object, it is prohibitively

expensive to have humans label training images for each category, particularly if the

system is ever to be extended to a general object recognition system. We are therefore

interested in extending the grammar-structure down to the primitive level (edges, re-

gions, blobs) and automatically learning the hierarchy from the most basic elements

upwards. We will research and develop these ideas in our future work.
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8.1 Summary of Major Contributions

The work in this dissertation makes contributions to the fields of machine learning,

artificial intelligence, pattern recognition, and statistical modeling in the following

ways:

1. The hierarchical and contextual model presented for representing highly variant

patterns is a novel representation that captures long-range variability and local

context. This model can also be applied to other highly variant data, such as

accented speech, genetic sequences, or social network analysis.

2. The application of the minimax entropy learning algorithm to hierarchical mod-

els was an advancement over the previous work on solely flat models. This algo-

rithm can be used to quickly and automatically learn context for models where

human intervention would be prohibitive.

3. The work on small sample set learning shows that our model can quickly gen-

eralize to never-before-seen instances from the same visual category with even

as few as six training instances. This makes our model ideal for recognition and

discrimination of objects for which it is difficult to obtain large training sets.

4. The ability to incorporate top-down information from the model during infer-

ence was shown to improve detection results and brings our research one step

closer to a system that can more accurately reason about what it is seeing. The

combination of bottom-up and top-down cues are crucial for advanced under-

standing of new input images.

5. The C4 algorithm is a novel inference algorithm that can discover and quickly

swap between multiple solutions in constrained graphical models. This algo-

rithm can be applied to a huge number of energy minimization problems in
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computer vision and machine learning.

Appendix A

Equation 4.20 conjectures that the new relationship r+ we should add at every iteration

should be the one that maximizes the Kullback-Liebler (KL) divergence between our

current model p(pg; Θ, R), (p) and the new model p+(pg; Θ+, R+), R+ = {R ∪

r+}, (p+). We first observe that the KL divergence can be viewed as the difference of

two expectations:

KL(f ||p) =

∫
f log

f

p
=

∫
f log f −

∫
f log p (8.1)

=Ef [log f ]− Ef [log p] (8.2)

We also learn the λ parameters at each iteration of the learning algorithm such that

the expectation of our model matches the expectation of the true distribution for the

constraints currently in the model

Ep[log f ] = Ef [log f ] (8.3)

We can then show

KL(f ||p) = Ef [log f ]− Ef [log p] (8.4)

= Ef [log f ]− Ep+ [log p] (8.5)

= Ef [log f ]− Ef [log p+] + Ep+ [log p+]− Ep+ [log p] (8.6)

= KL(f ||p+) +KL(p+||p) (8.7)

Thus, KL(f ||p) −KL(f ||p+) = KL(p+||p), so the relationship r+ that gives rise to

the model p+ with maximal difference from our current model p will also be the model

that maximizes the decrease in divergence between the true distribution f and the new

model p+.
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Appendix B

Estimating KL(p+||p) in Equation 4.20 is non-trivial, as we have a normalization

constant in front of each model that is different for p+ and p, and each model has

a different number of parameters. Equation 4.21 indicates that we can estimate this

distance using the Mahalanobis distance between (H
(β)
r+ (PGobs), H

(β)
r+ (PGsyn)).

r+ is the new relationship we’re adding, h+ is the expectation of the new histogram

Hr+ with respect to the new model p+

h+ = Ep+ [Hr+ ] = Ef [H
r+ ] (8.8)

and h0 is the expectation of the new histogram Hr+ with respect to our current model

p

h0 = Ep[H
r+ ] . (8.9)

Because we have not yet added r+ to the model and reestimated the parameters Θ+,

Ep[H
r+ ] 6= Ep+ [Hr+ ].

Our distance measure is

D(h+) = KL(f ||p)−KL(f ||p+) = KL(p+||p) . (8.10)

A Taylor expansion about D(h+) yields

D(h+) = D(h0) +D′(h0)(h+ − h0) +
1

2
D′′(h0)(h+ − h0)2 + ε (8.11)

and incorporating the higher order terms ε into the second-order term gives

D(h+) = D(h0) +D′(h0)(h+ − h0) +
1

2
D′′(h∗)(h+ − h0)2 , (8.12)

where h0 ≤ h∗ ≤ h+. Because h0 and h+ are vectors, we can rewrite the last factor in

8.12 in matrix form:

1

2
(h+ − h0)TD′′(h∗)(h+ − h0) (8.13)
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where D′′(h∗) is the inverse of the covariance matrix cov(h+, h0). Equation 8.13 can

be approximated by the Mahalanobis distance dmahn(h+, h0). In order to use that

approximation, we must show that

1. D(h0) = 0

2. D′(h0) = 0

D(h0) = 0 must be true because we are not adding any new information to the model

by adding h0, which is already in our model.

D′(h0) = 0 can be shown by looking at the term D(h+) in terms of our new p+,

which consists of all the relationships in our old model p and one new relationship, r+:

D(h+) =Ep[log p]− Ep+ [log p+] (8.14)

=entropy(p)− logZ[Θ+]−
∑
i

(< λ
(β)
i , hi >)− < λ

(β)
+ , h+ > (8.15)

Taking the derivative with respect to h+ gives

∂D

∂h+

= 0− ∂ logZ[Θ+]

∂h+

−
∑
i

(<
∂λ̃i

(β)

∂h+

, hi >)− <
∂λ

(β)
+

∂h+

> −λ(β)
+ h+ , (8.16)

where λ̃i
(β)

are the newly estimated λ parameters given the introduction of the new

relationship histogram h+.

Using

1

Z[Θ+]

∂Z[Θ+]

∂h+

=
∂ logZ[Θ+]

∂h+

, (8.17)

the first term in 8.16 cancels out and we are left with

∂D

∂h+

= −λ(β)
+ h+. (8.18)
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Because this equation does not involve h0 and the λ(β)
+ parameters are independent of

h0 and

D′(h0) = 0 . (8.19)

Thus we can write our distance estimate for KL(p+||p) as

KL(p+||p) = D(h+) =
1

2
(h+ − h0)TD′′(h∗)(h+ − h0) . (8.20)

Because Ep+ [Hr+ ] = Ef [H
r+ ], we can estimate h+ using (H

(β)
r+ (PGobs) and h0

using H(β)
r+ (PGsyn)). Thus,

D(h+) = dmahn(H(β)
r+

(PGobs), H(β)
r+

(PGsyn)) . (8.21)

Appendix C

Our goal is to compute the proposal probability ratio q(cccpo|A)
q(cccpo|B)

for selecting a composite

connected component cccpo at two states X = A and X = B which differ only in the

labels of nodes in cccpo.

At state A, step 1 of C4 samples all the edge variables U = {ue, : e ∈ E} in-

dependently following the Bernoulli probabilities. Let Eon(U |A) and Eoff (U |A) de-

note all the edges that are turned on and off respectively which depend on state A. If

e ∈ Eon(U |A) then ue was set to ’on’ with probability qe. If e ∈ Eoff , it can be turned

off either with probability 1 − qe or deterministically (i.e. the nodes at the two ends

have different labels for positive edges or the same label for negative edges). We are

only concerned with those edges that are turned on or off probabilistically and denote

it by

E∗off (U |A) = {e : ue = ′off ′, e ∈ E+, xi = xj}

∪{e : ue = ′off
′
, e ∈ E−, xi 6= xj}.
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We disregard the edges that are turned off deterministically as the later are not relevant

to the proposal probability. These edge variables U form a graph g(A) =< V,Eon >

with probability

p(g(A)|A) =
∏

e∈Eon(U |A)

qe
∏

e∈E∗off (U |A)

(1− qe).

In g(A), suppose we have a set of cccp’s, and denote them by CP (U |A), and we pick

up one as cccpo with uniform probability 1
|CP (U |A)| . Given state A, there are many

possible U ’s that can generate a certain cccpo by altering the connections inside the

cccp’s, we denote the set of such U ’s by

Ω(cccpo|A) = {U : cccpo ∈ CP (U |A)}.

Therefore, the probability for choosing a particular cccpo at state A is q(cccpo|A) =∑
U∈Ω(cccpo|A)

1

|CP (U |A)|
∏

e∈Eon(U |A)

qe
∏

e∈E∗off (U |A)

(1− qe)

All theU ’s in Ω(cccpo|A) share a common subset of edgesCut(cccpo|A) ⊂ E∗off (U |A)

which must be turned off probabilistically for cccpo being a valid composite connected

component. Thus we rewrite

q(cccpo|A) = (
∏

e∈Cut(cccpo|A)

(1− qe))

[
∑

U∈Ω(cccpo|A)

1

|CP (U |A)|
∏

e∈Eon(U |A)

qe∏
e∈E∗off (U |A)\Cut(cccpo|A)

(1− qe)].

Similarly, the probability for selecting cccpo at state B is

q(cccpo|B) = (
∏

e∈Cut(cccpo|B)

(1− qe))

[
∑

U∈Ω(cccpo|B)

1

|CP (U |B)|
∏

e∈Eon(U |B)

qe∏
e∈E∗off (U |B)\Cut(cccpo|B)

(1− qe)].
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As statesA andB differ only in their labels of cccpo, there is a one-to-one identical

match between g(A) and g(B), and thus one-to-one match between CP (U |A) and

CP (U |B). The only difference is the cuts Cut(cccpo|A) 6= Cut(cccpo|B). All other

terms are cancels, and we have

q(cccpo|A)

q(cccpo|B)
=

∏
e∈Cut(cccpo|A)(1− qe)∏
e∈Cut(cccpo|B)(1− qe)

.
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